ESTUDO ELETROQUÍMICO DA REDUÇÃO DA PIRASINA LIVRE E COORDENADA A RÚTENIO(II).
Adriana Magno e Douglas Wagner Franco
Instituto de Física e Química de São Carlos-USP, Cx. Postal 369, 13560, São Carlos-SP.

ABSTRACT

The electrochemical reduction of the pyrazine and the complex [Ru(NH$_3$)$_5$Cl$_2$]$^{2+}$, respectively, were studied using cyclic voltammetry and controlled-potential coulometry. As a function of solution hydrogen ion concentration two ($C_H^n = 2 \times 10^{-3}$) or three ($C_H^n = 10^{-3}$ to 10^{-5}) electrochemical processes can be observed.

A catalytic hydrogen evolution is exhibited ($E_{cp} = -1.60V$) even at $C_H^n = 10^{-4}$M for solutions containing the ruthenium pyrazine complex.

INTRODUÇÃO

A pirasina quando coordenada ao rutênio(II), na forma do complexo [Ru(NH$_3$)$_5$Cl]$^{2+}$, tem seu comportamento químico modificado(1), com aumento substancial em sua basicidade(2).

Lima e colaboradores(1) realizaram uma breve investigação sobre a redução eletroquímica do íon [Ru(NH$_3$)$_5$Cl]$^{2+}$ em meio neutro e alcalino observando processos dependentes da concentração hidroionica da solução. Entretanto, nenhum estudo em meio ácido foi realizado para melhor esclarecer as etapas de redução.

Este trabalho relata o comportamento eletroquímico do íon [Ru(NH$_3$)$_5$Cl]$^{2+}$ mais ácido, bem como uma reanalise da redução eletroquímica da pirasina.

PARTE EXPERIMENTAL

Pirasina (pó de procedência Aldrich foi utilizada sem nenhum processo pravo de puroificação. Os complexos [Ru(NH$_3$)$_5$Cl]$^{2+}$ e [Ru(NH$_3$)$_5$Cl(p2)Cl]were preparados como descrito na literatura(3,4).

Os espectros voltamétricos foram obtidos em um sistema compacto por Polarographic Analyzer/Stripping Voltammetry - modelo 266A, SHOE - modelo 503A e X-Y Recorder - modelo 50089 - PARC.

Para as eletrolisés a potencial controlada utilizou-se sistema PARC composto por Potenciostato/Galvanostato - modelo 173, Coulometro Digital - modelo 379, Programador Universal - modelo 175 e Registrador X-Y modelo 50091, com os seguintes eletrodos: pó de mercúrio, cloreto de mercúrio (KCl) e placas de platina, trabalho, referência e auxiliar respectivamente.

Um espectrofotômetro HP 8452A - Diode Array e bomba peristáltica HP 840532, foram utilizados para acompanhar espectrofotometricamente as soluções eletrolisadas.

RESULTADOS E DISCUSSÕES

Os potenciais de redução da pirasina coordenada ao complexo [Ru(NH$_3$)$_5$Cl]$^{2+}$ ($E_{cp} = -1.14V$) estão deslocados para valores mais negativos, em relação ao da pirasina livre ($E_{cp} = -0.69V$). Este deslocamento, de aproximadamente 500 mV, pode ser explicado pela retrodoução Ru(II) \rightarrow (Ru$^{2+}$).

Os voltamogramas cíclicos de soluções contendo pirasina, em concentrações hidrogeniónicas entre 2 e 10^{-5}M, apresentam três componentes como citado na literatura(3,4). Os dois primeiros processos são reversáveis e envolvem dois elétrons e dois protones, conforme indicam experimentos voltamétricos e eletrolíticos e potencial controlado. A análise do terceiro processo (1.1 = 0.90V), pelas técnicas acima mencionadas, sugere que este componente é devida a evolução catalítica de hidrogênio.

O espectro voltamétrico para a redução da pirasina livre, em $C_H^n = 10^{-2}$ a 10^{-5}M, apresenta um único processo que envolve dois elétrons. A constante heterogénea de transferência de elétrons, $K = 6.10^{10}$.m.s$^{-1}$, estimada por voltametria cíclica(5), sugere um processo quase reversível.

Os estudos de redução eletroquímica do complexo [Ru(NH$_3$)$_5$Cl]$^{2+}$, nas mesmas condições experimentais em $C_H^n = 2 \times 10^{-5}$M, sugerem que o processo ocorre via a reação:

\[\text{(NH$_3$)$_5$Ru H}_2\text{Cl}^{2+} + 2e^- + H^+ \rightarrow \text{(NH$_3$)$_5$Ru H}_2\text{Cl}^{-}\text{(eq. 1)}\]

O coeficiente de difusão da espécie (1) é de ordem de 1.9×10^{-7}cm2.s$^{-1}$. O valor de R_p está em 0.2×10^{-1}, calculado para o pico catódico, é próximo ao de processos reversíveis, entretanto a separação dos picos cátodo e anódico ($\Delta E_p = 1.44V$ $E_{cp} = -0.54V$) apresenta características de processo irreversível.

A concentrações hidrogeniónicas entre 10^{-2} e 10^{-5}M, foram observadas para soluções contendo o íon [Ru(NH$_3$)$_5$Cl]$^{2+}$, dois processos eletroquímicos. A análise do primeiro destes dois componentes indica o envolvimento de dois elétrons e dois protones, e um coeficiente de difusão da ordem de 10^{-5}cm2.s$^{-1}$.

Estes parâmetros indicam uma semelhança com o único componente detectado em soluções de maior concentração hidrogeniónica, sugerindo que as espécies químicas envolvidas podem ser similares:

\[\text{(NH$_3$)$_5$Ru H}_2\text{Cl}^{2+} + 2e^- + 2H^+ \rightarrow \text{(NH$_3$)$_5$Ru H}_2\text{Cl}^{-} \text{HCl}^{-}\text{(eq. 2)}\]

O segundo processo de redução do íon [Ru(NH$_3$)$_5$Cl]$^{2+}$, em concentrações hidrogeniónicas entre 10^{-2} e 10^{-5}M, ocorre a potenciais próximos ao do primeiro pico cátodo ($E_{cp} = -3.10V$ $E_{cp} = -1.21V$), dificultando seu esclarecimento.

Eletrolises a potencial controlado indicam um elevado número de coulombs por centro metálico. No mesmo tempo, medidas potenciométricas indicam consumo de íons H$^+$ competitivo com o número de coulombs enviados. Estes resultados sugerem que a redução eletroquímica do íon [Ru(NH$_3$)$_5$Cl]$^{2+}$ após o segundo elétron, origina por meio de uma reação química, uma espécie que catalisa a evolução de hidrogênio. Estudos eletroquímicos envolvendo o íon binuclear [Ru(NH$_3$)$_5$Cl]$^{2+}$ apresentam comportamento eletroquímico semelhante ao do íon complexo monocuclear. As bandas de transferência de carga, características dos íons [Ru(NH$_3$)$_5$Cl]$^{2+}$ ($\lambda_{max} = 470$ nm) e [Ru(NH$_3$)$_5$Cl]$^{2+}$ ($\lambda_{max} = 550$ nm), diminuem com o tempo de eletrolise.

A julgar pelas variações nos espectros eletroquímicos das soluções eletrolisadas, os íons complexos são consumidos originando uma ou mais espécies ativas.

Embora a molécula da pirasina livre também apresente uma onda catalítica de hidrogênio, isto apenas se verifica em concentrações hidrogeniónicas superiores a 10^{-4}M. Quando coordenada a Ru(II), a redução catalítica de hidrogênio pode ser observada mesmo quando $C_H^n = 10^{-5}$M.

A relação entre o número de coulombs experimental teórico é de 1.5 a 20, respectivamente para solução contentando apenas pirasina e o complexo rutênio-pirasina. Estas observações acima claramente demonstram a participação do centro metálico na reação em questão.

Este sistema encontra-se em estudo e os resultados serão publicados oportunamente.

REFERÊNCIAS BIBLIOGRÁFICAS