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On the basis of a recently proposed generalization of Boltzmann-Gibbs Statistical Mechanics and
Thermodynamics, we argue that the numbers provided by experimental measurements are to be
interpreted as g-expectation values (O); = Tr 510, where O is the observable, 5 is the density opera-
tor and the real index g characterizes the corresponding (generically nonextensive) entropy and de-
pends on some general characteristics of the system. The familiar association with the mean value
(O)1 = Trp O as well as the extensivity of standard additive observables are recovered only for the
Boltzmann-Gibbs particular case (g = 1), V 3, or for pure states, Vq. This interpretation leaves un-
touched the standard additivity and conservation of energy for pure states, but, unless g = 1, modifies
the definition and additivity of internal energies for statistical mixtures.
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...One who brings

A mind not to be changed by place or time.
The mind is its own place, and in itself

Can make a heaven of hell, a hell of heaven.

Paradise Lost (1658-1665), John Milton.

The fundamental connection between the experiment and
the theory in any quantitative Science relies (always did and
always will!) on the mathematical object to which is to be
associated the number provided by the experiment. Our pur-
pose here is to show that this central question is - curiously
enough! - related to Ludwig Boltzmann’s thermostatistics, its
subsequent formalization by Josiah Willard Gibbs, and a re-
cently proposed! generalization of Boltzmann-Gibbs (BG) Sta-
tistical Mechanics and Thermodynamics.

Let us briefly recall that the (Hilbert space) full description
of an arbitrary quantum system can be done (see, for instance
ref. 2) by giving its density operator p which satisfies

Tep =1 )

If and only if the system is in a pure state (which is the
typical situation in Quantum Mechanics) we verify that 52 =
p, i.e., pis a projector (hence, if diagonalized, p presents
zeros everywhere excepting one diagonal value which equals
unity); in other words, the system is in a perfectly known vec-
tor of the Hilbert space (this vector might or not be an
eigenvector of a particular observable, say the Hamiltonian #).
If the state is not a pure one, then we have a statistical mix-
ture (if diagonalized, p presents in its diagonal the probabili-
ties {p;} which satisfy Y, p; = 1). In this sense, the pure state
is that particular instance of statistical mixture where all but
one probability vanish (say p,= 1, and p; = 0, Vi #0).

A typical quantum experiment consists in an apparatus
devised for measuring an observable O of a given physical
system. If the system state is a pure one (for simplicity we
shall assume it to be an eigenvector of the observable ), then,
as convincingly argued in any good Quantum Mechanics text-
book, the number provided by the experiment is to be inter-
preted as one of the eigenvalues of 0. The situation is more
subttle when the system state is a statistical mixture character-
ized by p (e.g., for a typical calorimetric experiment, where the
system is thermalized at temperature T). In this complex case
(which is that of Gibbs-like ensembles, for instance,) textbooks
normally associate the number provided by the experiment with

468

the mean value Trj O. We shall argue here that this is only a
particular (though extremely ubiquitous, hence important)
case. We propose instead to generically interpret the experi-
mental result as the g-expectation value

(O)y=Trpuo @

where the index g is a real number which depends on some
generic characteristics of the system we shall discuss later on.
This new interpretation

(i) is irrelevant for pure states since then p, = 1, hence p, = p:!
=1, Vg,

(ii) recovers the usual interpretation for all systems whose
index g = 1.

Remark (i) implies, for instance, that concepts such as the
conservation of the total energy of an isolated system, as well
as the additivity of its parts, remain untouched if the state is
a pure one. But, unless q = 1, this is not true anymore if we
are facing a generic statistical mixture. Although we shall
come back onto this problem later on, we can already advance
that, if we have a composite system YUY, the subsystems Y,
and Z being independent (i.e.,psus' = Pps® p 5, hence
p,-);fuz = piEpjz, V(i,j)) and energetically noninteracting (i.e.,
Hyos: = Hs+ Hy, hence sf}uz= e,-y‘ + ejy‘, where the €’s are
the eigenvalues of the respective Hamiltonians), then

(HAzozh = Tr Psus Hsos
=Tr(ps® py) (F5+ Hz)
=Trl(pz ® ps) sl + Trl( sz ® py) sl
= (TrpxHs)Trps) + (Trpy A )Trpy)
=TrpsHs + Tr ps s
= (5 + (Fh (3)

whereas generically

(Azosdg=Trp g:u):’ Hsos
=TrpyA)Trpy) + (Trpl As)XTrpd)
= (A Trp L) + (A (Trp 3
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# (H5)q + (Hx)q ©)

(Remark that Tr § ¢ equals unity only if we have a pure state
(Vg) or if ¢ = 1(V$)). Eq. (2) can be rewritten as follows

(O) = Trpp=10 = (51O} ®)

Let us then stress that the g-expectation value (0), is not a
mean value of O (unless ¢ = 1 or the state is a pure one), but
it is always the mean value of J7!0. Consequently, if we
consider a real number A and the operator O = A1 where 1 is
the identity, we have that (A1), generically differs from A (it
coincides only if A = 0, oo or if g = 1 or if the state is a pure
one). A trivial though unfamiliar corollary is that generically
(1)q # 1. Let us now address the following questions: where
g comes from?, why proposing the g-expectation values as the
right connection with experimental values?, what are the
physical systems having g # 1?

We proposed in 1988! the following generalization for the
entropy:

1-3:pf
q-1

S, =k

q (ge R) (6)

wkere k is a conventional positive constant. Eq. (6) can be
written as follows in terms of pJ:

1-Trp? N

Sq =k __rP_ = <Sq>q @)
q-1

with
g

g, =k P! 8)
1-q

In the ¢ — 1 limit we recover the standard Boltzmann-Gibbs-
Shannon entropy S;= -kg X;pilnp; = -kgTrpInp, and the
entropy operator §; = -kgln .

If we define the following generalized logarithmic func-
tion (which naturally appears, for instance, in the replica trick
used in the discussion of spin-glasses)

1-

Ingx =X =1 (vx) 1))
l-g

we verify that

Injx = lim In,x = Inx (10)
q—1

and that Eqgs. (6) and (8) can be respectively rewritten as fol-
lows:

S, = -kZpiqlnqpi an
and
8, = -kIn, p (12)

S, vanishes for any pure state and is positive for any other
statistical mixture; it is concave (convex) if ¢ > 0 (g < 0),
Vj (this is an important property since it guarantees the
thermodynamic stability of the system). But, in contrast with
the standard entropy, S, is generically not additive (nonextensive).
Indeed, it is straighforward to show that, for the system YUY’
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mentioned before, the assumption Py y = Py® Py implies

)93 p2 3 z X

Se = _Se  Si .85 13)
k k k k k

and

g):u):' oz e 2T

_i_=ﬁ_+SL+(q-1)SLSL (14)
k k k k  k

Let us establish now an interesting property which follows
along the lines of Eq. (4). If we go back to the system X3
and consider any observable satisfying Oy s = Oy + Oy, We
straightforwardly obtain

(02u2‘>q = <02>4(Trﬁ g:') + (02')4(Trp" 2)
= (O + (0%), + (1 -q) {O)Se 1k +(Og'ySEIK] (15)

where we have used definition (6). This relation once again
exhibits that, for arbitrary observables, extensivity is obtained
only if ¢ = 1 (for any states), or for pures states (Vg) since,
for them, the entropy vanishes.

Following along the lines of Gibbs (see also ref. 3,4) let us
deduce now the equilibrium distribution associated with ap-
propriately generalized canonical and grand-canonical ensem-
bles. We shall optimize S; given by (6) under the constraints
given by Eq. (1) as well as by

(0) =Trpi0,=0" (m=0,1,2,..,M (16)
where O™ are finite fixed quantities (Op= # and O = U,
=generalized internal energy). M = 0 corresponds to the ca-
nonical ensemble, and M > 1 to the grand-canonical one. We
straightforwardly obtain the following equilibrium distribution

1

s [1-(-@B(H -5 umdu)] 0

A. an
q Zq
with
M R 4
Z,=Tr(1-(0-@B(HA-2 tnOn)"* (18)

m=1

In the limit ¢ — 1 we recover the well known BG equilibrium
distribution

s e B A Im=i O

Peq= 2 a9
with
Z, = Tr eB(5-Tn=1 1, Op) (20)

If we define the following generalized exponential function
1
eg=l1+(1-9xJrg (Vi) (21)
we verify that
el =limg, ej=¢" (22)
and that Eqgs. (17) and (18) can be respectively rewritten as

follows:
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. BOH -1 i Op)
q

Peg= +—— (23)
eq Zq

with
" = Tr eq-ﬁ(f[‘ Zan=l ﬂmam) (24)

It is worthy to stress that, Vq,

tnge; = e;nqx =x (Vx) (25)

Following along the lines of standard Statistical Mechan-
ics, it can be quite straightforwardly shown (by introducing §
= 1/kT) that, Vgq,

1 - 9% 26)
T Yy,
Bno_ % (=12, ., M) @n
T a0,
l-q_
v=-0 2"l 0 g, (28)
B 1l-q 3p
I-q_
ol 0 Za-l 1 9 g5
B Otm 1-q B Opim
(m=1,2 ., M) (29)
M g
Fo=U,-15,-3 0 =-L 2 "1 _ 1 4 7 @0
! B 1-q B

Although we have not attempted a proof, the Gibbs-Duhem
relation is hopefully generalized as follows:

M
Uy -TS,- 3,

m=1

O = 0 31)

where M corresponds to the number of observables which

completely exhausts the thermodynamic description of system

(hence M > M).

Let us now briefly list our arguments in favour of the g-
expectation values being the mathematical objects to be asso-
ciated with the experimental data.

(i) We have seen above a very remarkable fact: the entire
formalism of Thermodynamics can be extended to be non-
extensive without loosing its Legendre-transform structure.
This transformation seems to play in Thermodynamics
the crucial role that the Lorentz transformation plays in
Relativity. E. M. F. Curado (private communication) made
a variety of heuristic trials with large classes of entropic
forms: the present formalism seems to be the unique which
preserves the standard Legendre-transform structure.

(ii) The Ehrenfest theorem remains form-invariant, Vq, as
follows?:

d(0),

= L (14 01), (32)
dr i

Consequently, as first pointed to me by A. R. Plastino
(private communication), if [4; O] = 0, it is precisely

470

the g-expectation value (0), which is a constant of the
motion, and not {O).

(iii) The Shannon theorem can be simpy generalized?,and its
form makes naturally appear prefactors of the type
(probability)d (see also ref. 5).

(iv) The generalezed entropy S, together with the g-expec-
tation values, satisfies Jaynes Information Theory duality
relations?; these relations are necessary for an entropy to
be considered a measure of the (lack of) information. In
fact this point is related with the above point (i).

(v) The fluctuation-dissipation theorem can be naturally
generalizedS; and the Onsager reciprocity theorem can
be shown to remain form-invariant™; Vq, if the g-expec-
tation values are assumed to be the relevant quantities.

(vi) The g-expectation values enable the retrieval, from a
variational principle, of Lévy distributions® as well as of
the Student’s t-distribution and the r-distribution®.

(vii) Barlow!® and Toulouse!! have empahasized the neces-
sity, in the theoretical approach of the physiology of per-
ceptions, of enhancing the weight of the events that are
rare. More specifically, they argue about the necessity
of having weights proportional to - Inp;. We can easily
see that a weight p% enhances the rare (frequent) events
if g <1 (g > 1). In the g —» 0 limit we verify, for W
possible microscopic configurations, that’

YV w
S LX) G3)
k g-1 i=l
and
w w \'%
(0= X p/0i~% 0i-q 3 O:(lnp) (34)

i=1 i=1 i=l

We remark that, excepting for constant terms, the weights
precisaly are - Inp; as desired.

(viii) The g-expectation values enable satisfactory discussion
for a paradox (“The envelope game”) in the Theory of
Statistical Inference!? and the theoretical approach of di-
lemmas in the Theory of Financial Decisions>,

Let us finally briefly address what kind of systems corre-
spond to g # 1. The crucial point is whether the range of the
relevant interactions is small compared whith the size of the
system, and whether the range of the microscopic memory is
small compared with the time of observation. If both condi-
tions are satisfied, then ¢ = 1. If one or both of them are
violated, then one expects g # 1. Consistently, one expects g
# 1 if the space-time of the system is (multi) fractal-like. Typi-
cal g # 1 situations are:

(i) d-dimensional gravitational-like system!3.14 (two-body
attractive interactions with a potential which behaves, at
long distances, as r%). The relevant BG integrals di-
verge if 0 < o < d'315; the difficulties hopefully disap-
pear if ¢ < q.(d, &) where q.(d, &) < 1. For (d, o) = (3,
1) (Newtonian gravitation), it is!415 g3, 1) = 7/9.

(ii) d-dimensional long-range magnetism (e.g., spin 1/2 Ising
ferromagnet) with J; = Jr ,-}(‘” ) (d + 6 2 0). The relevant
sums diverge if 6 < 0 (hence the BG critical point kgT,/
J diverges)!516, In analogy with the gravitational case,
one expects!S all difficulties to disappear if ¢ < ¢.(d,8),
with g.(d,8) < 1 (obviously, it is g(d,8) = 1 if 3 = 0).

(iii) Nonionized Hydrogen atom. Its BG partition function
diverges; consistently, no prescription exists for calcu-
lating its specific heat. To the best of our knowledge,
this very relevant (at least theoretically) point has never
been satisfactorily focused in the available Statistical
Mechanics textbook (in fact, generally it is not even
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mentioned!). It has been recently shown that, if g < 1,
the specific heat becomes a computable quantity, being
finite almost everywhere.

(iv) Anomalous diffusion phenomena (superdiffusion) fol-
lowing Lévy-like distributions. It is impossible!® to de-
rive Lévy distributions from a BG entropic variational
principle using simple (i.e., acceptable a priori) con-
straints. In contrast, this becomes possible®-1%, as already
mentioned, for ¢ > g.(d) where g.(d) > 1 (e.g., g.(1) =
5/3). More precisely, whenever the visiting probability
behaves, at long distances, as r®*? with 0 < y< 2, a
strict relationship can be established between q, d and y
(e.g., for d = 1 and q > 5/3, g = 3+Y)(1+Y)®). This fact
yields a statistical-mechanical foundation of a variety of
Lévy-like phenomena occurring in Nature, such as
superdiffusion of CTAB micelles dissolved in salted
water (where 1.5 < ¥ < 2)20, heartbeat histograms (where
v = 1.7)2!, and others22,

(v) Line tension phenomena at wetting. If the range of the
forces is long enough, relevant thermodynamic quanti-
ties such as the boundary tension diverge?3. Once more,
in analogy with the gravitational case, one expects the
problem to be overcome if g is sufficiently below unity.

Summarizing, we have presented here a variety of math-
ematical and physico-chemical arguments which support the
need and convenience for generalizing Boltzmann-Gibbs Sta-
tistical Mechanics and Thermodynamics. Special attention has
been given to the mathematical object which is to be identi-
fied with experimental data; it has been argued (convincingly,
we hope!) that this is (@) = Trp40. This proposal recovers
the usual concept ({O); = Trp 0) for g = 1 (for both pure and
statistical mixtures) as well as for pure states (for all values
of g). But it differs from the usual concept if g # 1 and the
state is not a pure one. As an important corollary we have that,
for pure states and all values of g, the standard conservation of
the energy as well as the additivity of its parts remain un-
changed; but, if ¢ # 1 and we have a statistical mixture, the
quantity which is conserved is a conveniently redefined inter-
nal energy and the standard additivity of its parts is violated.

The present attempt to enlarge the frontiers of the magnifi-
cent work of Ludwig Boltzmann is, at the occasion of the
150th anniversary of birth, my homage to his geniality.

I have benefited from extremely valuable remarks by E. M.

F. Curado, A. R. Plastino, A. Plastino, M. Nauenberg, M. A.

Virasoro and F. C. Alcaraz.
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