ESTIMATIVA DA ENTALPIA RETICULAR ($\Delta_M H_M^{\circ}$) DE ADUTOS ATRAVÉS DE TERMOGRAVIMETRIA: USO DE UMA EQUAÇÃO EMPÍRICA

Robson Fernandes de Farias

Departamento de Química - Universidade Federal de Roraima-UFRR - Av. Venezuela s/n - 69310-270 - Boa Vista - RR

Recebido em 27/9/96; aceito em 17/4/97

LATTICE ENTHALPIES ($\Delta_M H_m^o$) OF ADDUCTS USING AN EMPIRICAL EQUATION SUPPORTED IN TG DATA . An empirical equation: $\Delta_M H_m^o = t_i/\beta$ (where t_i is the Kelvin temperature of the beginning of the thermal decomposition obtained from the thermogravimetry of the adducts; β is an empirical parameter wich depends on the metal halide and on the number of ligands) was obtained and tested for 53 adducts $MX_2.nL$ (where MX_2 is a metal halide from the zinc group). The difference between experimental and calculated values was less than 6% for 22 adducts. To another 22 adducts, that difference was less than 10%. Only for 4 compounds the difference between experimental and calculated values exceeds 15%.

Keywords: adducts; lattice enthalpy; thermogravimetry; empirical equation.

INTRODUÇÃO

Uma grande quantidade de sólidos inorgânicos, e alguns poucos sólidos orgânicos, podem ser convenientemente entendidos como um arranjo tridimensional de íons. Em princípio, a energia desse arranjo de íons pode ser considerada como sendo uma soma das forças atrativas e repulsivas existententes entre os íons de cargas opostas, da repulsão adicional devido à sobreposição dos elétrons externos de íons adjacentes e de uma variedade de fatores de menor peso para a energia total tais como energia de van der Waals e energia do ponto zero¹.

A energia do retículo cristalino de um composto iônico, é definida como a energia liberada quando os íons separados a uma distância infinita são aproximados para formar um cristal²:

$$M^+_{(g)} + X^-_{(g)} = MX_{(cr)}$$

Em química de coordenação, a entalpia reticular $(\Delta_M H_m^o)$ encontra-se associada ao processo : $MX_2(g)+nL(g)=ML_nX_2$ (cr), onde MX_2 é um haleto metálico e L é o ligante. O valor de Δ_M H_m^o é calculado utilizando-se as entalpias de sublimação do haleto metálico e do ligante, além do valor experimental de $\Delta_r H_m^o$ (entalpia de reação ácido-base em fase condensada):

$$\Delta_{M}H_{m}^{o} = -\Delta_{r}H_{m}^{o} + \Delta_{cr}^{g}H_{m}^{o}(MX_{2}) + n\Delta_{cr}^{g}H_{m}^{o}(L)$$

Muitas vezes, a entalpia de sublimação do ligante não é encontrada na literatura, sendo necessário estimá-la (via DSC ou outra técnica), o que pode introduzir erros significativos no valor calculado de $\Delta_M H_m^{\ o}$, dependendo da qualidade da estimativa efetuada.

Uma vez que os experimentos calorimétricos são usualmente laboriosos, seria realmente interessante dispor-se de formas alternativas de estimar os valores dos parâmetros termoquímicos. Além disso (e talvez mais importante), correlações entre os valores desses parâmetros e outros parâmetros experimentais (ou teóricos) podem mostrar-se como estimulantes caminhos para a investigação das propriedades dos compostos de coordenação.

Neste trabalho, estabelece-se uma correlação quantitativa entre $\Delta_M \; H_m^o \; e \; t_i$, a temperatura (Kelvin) do início da degradação térmica do composto, obtida através da curva TG. Uma vez que uma curva termogravimétrica pode ser obtida com rapidez, necessitando de apenas poucas mg de material, a equação proposta pode ser facilmente utilizada.

OBTENDO UMA EQUAÇÃO

A equação $\Delta_M~H_m^o=t_i~/\beta$, foi obtida analisando-se os dados termoquímicos e termogravimétricos para os compostos entre haletos do grupo do zinco e a dimetilformamida $(dmf)^{3.4}.$ Os valores de t_i foram divididos pelos valores de $\Delta_M~H_m^o$, encontrando-se os valores de β (que são função do haleto metálico e do número de ligantes). Os valores de β fornecidos na tabela 1, são valores médios (média aritmética simples) em relação aos valores encontrados num dado grupo de compostos.

Tabela 1. Valores de β para haletos do grupo do zinco

Haleto metálico	ſ	3
	um ligante	dois ligantes
ZnX ₂	1,84	1,18
CdX_2	1,68	1,13
HgX_2	2,24	<u>-</u>

X= Cl, Br ou I

RESULTADOS E DISCUSSÃO

A equação obtida foi testada para um total de 53 compostos com haletos do grupo do zinco : compostos com dimetiletilenouréia (dmeu)⁵, ε-caprolactama (cl)⁶, tioacetamida (ta)⁷ e tiobenzamida (tb)⁷, tetrametiluréia (tmu)⁸, dimetiluréia (dmu)⁸ e metiluréia (mu)⁸, dimetilacetamida (dma)⁹, e finalmente compostos com uréia (u)^{10,11}.

Vale a pena chamar a atenção para o fato de que todos os ligantes anteriormente citados são monodentados, coordenando através de um átomo de enxofre (tioacetamida e tiobenzamida) ou oxigênio (os demais).

Os resultados obtidos encontram-se agrupados na tabela 2.

Os resultados obtidos podem ser resumidos da seguinte forma: para 22 dos compostos para os quais a equação foi testada, a diferença entre os valores calculado e experimental foi inferior a 6%. Para outros 22 compostos, essa diferença ficou entre 6% e 10%. Apenas para 4 dos compostos testados, a diferença entre valor calculado e experimental superou a casa dos 15%.

Na equação apresentada, a determinação do valor correto de t_i na curva termogravimétrica, certamente é de vital importância. Os valores de t_i apresentados na tabela 2 são aqueles fornecidos

Tabela 2. Valores calculado e experimental de $\Delta_M \; H_m^{\; o}$ para alguns compostos com haletos do grupo do zinco.

Composto	$t_i(K)$		$\Delta_{\rm M} H_{\rm m}^{\rm o} ({\rm kJmol}^{-1})$	
		Experimental Calculado		
ZnCl ₂ .2dmeu	366	336	311	-7,4%
ZnBr ₂ .2dmeu	377	335	320	-4,5%
ZnCl ₂ .2cl	415	391	352	-10,0%
ZnBr ₂ .2cl	403	339	342	0,9%
ZnI ₂ .2cl	414	325	351	8,0%
ZnCl ₂ .2ta	468	377	397	5,3%
ZnCl ₂ .2tb	450	408	381	-6,6%
ZnCl ₂ .2tmu	364	333	308	-7,5%
ZnCl ₂ .2dmu	454	375	385	2,7%
ZnCl ₂ .2mu	441	342	374	9,4%
ZnBr ₂ .2tmu	390	322	331	2,8%
ZnBr ₂ .2dmu	467	358	396	10,6%
ZnBr ₂ .2mu	441	325	374	15,1%
ZnI ₂ .2tmu	386	350	327	-6,6%
ZnCl ₂ .2dma	386	324	327	0,9%
ZnBr ₂ .2dma	374	318	317	-0,3%
ZnI ₂ .2dma	388	308	329	6,8%
ZnCl ₂ .2u	412	386	349	-9,6%
ZnBr ₂ .2u	402	366	340	-7,1%
ZnI ₂ .2u	409	377	347	-7,9%
CdI ₂ .2dmeu	344	309	304	-1,6%
CdCl ₂ .cl	453	292	270	-7,5%
CdBr ₂ .cl	433	249	258	3,6%
CdI ₂ .2cl	398	329	352	7,0%
CdCl ₂ .tb	493	304	293	-3,6%
CdCl ₂ .2ta	410	392	363	-7,4%
CdCl ₂ .tmu	428	277	255	-8,3%
CdCl ₂ .dmu	367	296	218	-26,4%
CdCl ₂ .mu	493	182	293	61,0%
CdBr ₂ .tmu	349	235	208	-11,5%
CdBr ₂ .dmu	453	249	270	8,4%
CdBr ₂ .mu	472	239	281	17,6%
CdI ₂ .2tmu	355	303	314	3,6%
CdCl ₂ .dma	354	256	211	-17,6%
CdBr2.dma	418	234	249	6,4%
CdI ₂ .2dma	338	291	299	2,8%
CdCl ₂ .u	496	290	295	1,7%
CdBr ₂ .u	464	253	271	7,1%
CdI ₂ .u	399	256	237	-7,4%
CdBr ₂ .2u	445	351	394	12,3%
CdI ₂ .2u	387	333	342	2,7%
HgCl ₂ .cl	411	180	184	2,2%
HgBr ₂ .cl	407	186	182	-2,2%
HgCl ₂ .tmu	369	170	165	-2,9%
HgCl ₂ .dmu	426	185	190	2,7%
HgCl ₂ .mu	416	175	186	6,3%
HgBr ₂ .tmu	365	164	163	-0,6%
HgBr ₂ .dmu	426	185	190	2,7%
HgBr ₂ .mu	429	176	192	9,1%
HgCl ₂ .dma	333	152	149	-1,9%
HgBr ₂ .dma	333	152	149	-1,9%
HgCl ₂ .u	440	180	196	8,9%
HgBr ₂ .u	432	171	193	12,9%

 $^{*\}Delta\% = [(calculado - exp.)/exp.]x100$

pelos respectivos autores (em alguns casos, os valores de t_i podem ser encontrados apenas nas teses ou dissertações e não nos artigos. Por isso aquelas foram utilizadas preferencialmente como referências).

Os efeitos exercidos pelas condições experimentais (compactação da amostra, velocidade de aquecimento, etc.) sobre as curvas TG, não parecem introduzir variações significativas sobre os valores de t_i, a ponto de comprometer o uso da equação empírica aqui apresentada.

Como critério para o estabelecimento de t_i para os compostos com dmeu⁵ foi considerada como sendo significativa uma variação de massa de pelo menos 3% em relação à massa inicial. Para os demais compostos, desconhece-se qual o critério adotado pelos respectivos autores para o estabelecimento de t_i o que significa dizer que, pelo menos em princípio, seis critérios diferentes⁵⁻¹⁰ foram adotados.. Isto porém apenas vem demonstrar que, pequenas variações no critério para o estabelecimento de t_i não comprometem o uso da equação proposta.

Vale a pena lembrar mais uma vez que t_i é a temperatura do início da degradação térmica **do composto**, e que portanto, caso a primeira etapa de perda de massa seja devida à desorção de água ou outra substância adsorvida, esta deve ser desprezada.

CONCLUSÕES

O fato de que o valor de β depende do haleto metálico considerado e também do número de ligantes, sugere que a estrutura do haleto e do composto determinam grandemente os valores de $\Delta_M H_m^0$, o que certamente é um raciocínio razoável.

As tendências observadas: $\Delta_M H_m^o \to 0$ se $t_i \to 0$, e $\Delta_M H_m^o \to \infty$ se $t_i \to \infty$, certamente são consistentes, uma vez que, entre dois compostos similares, aquele que tiver maior valor para $\Delta_M H_m^o$ será termicamente decomposto com maior dificuldade, o que significa dizer que o valor de t_i deverá ser maior.

Com exceção do composto $CdCl_2$.dma, todos os compostos que apresentam $\Delta\%$ superior a 10%, envolvem os ligantes u, mu, dmu ou tmu, sugerindo a necessidade de, numa futura forma aperfeiçoada da equação, se incluir algum tipo de fator

(estérico ?), específico para um determinado grupo de ligantes. Uma outra forma de encarar a questão, seria pensar-se em possíveis diferenças estruturais entre os compostos, pois devemos lembrar que os valoras de β foram calculados à partir de compostos com dmf. Uma vez que entre os compostos que apresentam valores comparativamente elevados para $\Delta\%$ se encontra apenas um composto com haleto de zinco, sendo os demais com haletos de cádmio ou mercúrio, a segunda explicação parece mais plausível, uma vez que os adutos com haletos de Cd e Hg costumam ser mais irregulares do ponto de vista estrutural que os adutos com haletos de Zn.

Uma equação empírica correlacionando t_i e $\Delta_D H_m^o$ (entalpia padrão de decomposição) chegou a ser obtida¹², indicando a existência de uma relação de proporcionalidade entre t_i e os demais parâmetros termoquímicos.

REFERÊNCIAS

- 1. Cotton, F. A.; Wilkinson, G.; Gaus, P. L.; Basic Inorganic Chemistry; John Wiley & Sons, New York, 1995.
- Huheey, J.; Keiter, E. A.; Keiter, R. L.; Inorganic Chemistry; Harper Collins College Publishers, New York, 1995.
- 3. Oliveira, O. A. de; Tese de Dotorado. IQ-Unicamp, 1981.
- Oliveira, O. A. de; Chagas, A. P.; Airoldi, C.; *Inorg. Chem.* 1983, 22, 136.
- Farias, R. F. de; Oliveira, O. A. de; Quím. Nova 1996, 19, 100.
- 6. Silva, Z. R. da; Dissertação de Mestrado, UFC, 1993.
- 7. Airoldi, C.; Digiampietri, E. A.; J. Chem. Thermodynamics 1992, 24, 33.
- 8. Assunção, F. P.; Tese de Doutorado; IQ-Unicamp, 1980.
- 9. Simoni, J. de A.; Tese de Doutorado; IQ- Unicamp, 1978.
- Santos, M. R. M. C.; Dissertação de Mestrado; IQ-Unicamp, 1985.
- Santos, M. R. M. C.; Airoldi, C; Thermochim. Acta 1988, 125, 295.
- Farias, R. F. de; 19^a Reunião Anual da Sociedade Brasileira de Química, 1996 (resumo QI 095).