ADSORÇÃO DO COMPLEXO H[Ru(III)Cl₂(H₂EDTA)] SOBRE A SUPERFÍCIE DA SÍLICA GEL MODIFICADA COM [3-(2-AMINOETIL)AMINOPROPIL]TRIMETOXISSILANO EM SOLUÇÕES ETANÓLICAS

Angélica Machi Lazarin e Rosana Lázara Sernaglia

Departamento de Química - Universidade Estadual de Maringá - UEM - Av. Colombo, 5790 - 87020-900 - Maringá - PR

Recebido em 11/5/98; aceito em 24/9/98

ADSORPTION OF H[Ru(III)Cl₂(H₂EDTA)] COMPLEX ON MODIFIED SILICA GEL SURFACE WITH [3-(2-AMINOETHYL)AMINOPROPYL]TRIMETHOXYSILANE IN ETHANOL SOLUTIONS. Silica gel was functionalized with [3-(2-aminoethyl)aminopropyl]trimethoxysilane group (SF-AEATS) and the characterization by chemical analysis (N) and infrared spectroscopy confirmed the functionalization. The capacity of the modified silica to adsorb the complex Ru(III)-EDTA from ethanolic solution was studied. The selectivity coefficients of the complex formed on the support obtained was $(\Gamma_{\tilde{n}})$, 2,07 x 10⁴ L/mol and the average number of ligand bonded by one metal ion on the support (\tilde{n}) was ~ 1.

Keywords: adsorption; ruthenium(III)-EDTA complex; silica gel modified.

INTRODUÇÃO

Sílica gel é um óxido inorgânico que apresenta grupos silanóis reativos em sua superfície, podendo sua modificação ser feita através da reação destes silanóis com grupos orgânicos (organofuncionalização) ou inorgânicos (inorganofuncionalização)¹.

O grande interesse no estudo destes materiais deve-se ao fato da sílica gel quimicamente modificada (SGQM) possuir altas estabilidades térmica, química e mecânica² e, dependendo do agente modificador utilizado, poder ser aplicada em cromatografia, na imobilização de enzimas^{3,4}, como catalisador em reações de troca iônica⁵, na construção de eletrodos quimicamente modificados (EQMs), que são particularmente úteis em eletrocatálise e na construção de sensores, entre outras técnicas^{6,7}.

Neste trabalho, primeiramente foi sintetizada a sílica quimicamente modificada com o agente modificador [3-(2-aminoetil) aminopropil]trimetoxissilano (SF-AEATS), e sua caracterização foi feita por espectroscopia vibracional, determinação de área superficial específica, pelo método BET e da quantidade de etilenodiamina ancorada na SF-AEATS, por conductometria. A seguir efetuou-se o estudo da adsorção química do complexo H[Ru(III)Cl₂(H₂EDTA)] neste material, em soluções etanólicas.

O interesse neste sistema é devido ao fato de complexos de rutênio apresentarem atividade catalítica, sendo encontrado na literatura exemplos dos mesmos adsorvidos sobre superfícies modificadas⁸⁻⁹, inclusive com o agente modificador AEATS. Alguns trabalhos envolvendo complexos de Ru(III)/(II)-EDTA foram desenvolvidos por nós^{10,11} e, no presente artigo apresentamos o estudo da adsorção química do íon complexo [Ru(III)Cl₂(EDTA)]³⁻ na superfície da SF-AEATS, por ligação covalente.

PARTE EXPERIMENTAL

O complexo H[Ru(III)Cl₂(H₂EDTA)].4,5.H₂O foi sintetizado e caracterizado por técnicas convencionais ^{I2-14}.

Sílica gel 60-Aldrich (70-230- mesh), com área superficial específica de 506 m²/g, foi inicialmente ativada a 150°C sob alto vácuo, por 8 horas¹.

O ligante AEATS (Aldrich) foi caracterizado por espectroscopia vibracional e medida de índice de refração¹⁵, não havendo necessidade de purificação.

A SF-AEATS foi obtida de acordo com método descrito na literatura 16, com a reação de funcionalização da sílica com o agente modificador AEATS (Aldrich) realizada em suspensão de tolueno seco (tratado como descrito na literatura 17) sob refluxo e atmosfera de nitrogênio seco.

A análise elementar de N do grupo organofuncional (etilenodiamina) foi determinada pelo método Condutométrico 18 . Inicialmente, mediu-se a condutância de 25,0 mL de uma solução padronizada de ácido clorídrico 0,02 mol/L, termostatizada a 25,0 \pm 0,1 $^{\rm o}$ C. Em seguida, adicionou-se massa conhecida (~0,2000 g) da sílica SF-AEATS, em 25,0 mL da solução do ácido. As suspensies foram agitadas magneticamente por 1 hora e então leu-se novamente as condutâncias. Este estudo foi feito para 3 amostras de sílica.

A quantidade de nitrogênio por grama de sílica, para cada amostra, foi calculada pela Equação 1:

$$C_{N} = \frac{\left(M_{HCI}^{o} - M_{HCI}^{res}\right)}{m} . v_{HCI}$$
 (1)

onde

 C_N = número de mols de nitrogênio por grama de sílica; $M^o{}_{HCl}$ e $M^{res}{}_{HCl}$ = concentrações das soluções do ácido antes e depois da adição da sílica;

m = massa de sílica utilizada;

V_{HCl} = volume de solução de ácido clorídrico.

As áreas específicas da sílica pura ativada (SPA) e da sílica funcionalizada (SF-AEATS) foram determinadas pelo método B.E.T. ^{19,20}, num medidor de área superficial CG 2000, da CG Equipamentos Científicos.

Os experimentos de adsorção das soluções etanólicas do complexo H[Ru(III)Cl₂(H₂EDTA)].4,5H₂O foram efetuados agitando-se mecanicamente 100,0 mg de sílica SF-AEATS com 10,0 mL das soluções de Ru(III)-EDTA em diferentes concentrações (1,0x10⁻⁴ a 1,0x10⁻³ mol/L), num banho a 25,0±0,2°C por 20 minutos. O produto alaranjado obtido, o complexo Ru(III)-EDTA adsorvido na superfície da sílica gel AEATS (SF-AEATS/Ru(III)), foi filtrado e as concentrações do complexo de Ru(III)-EDTA no equilíbrio foram determinadas em alíquotas do sobrenadante por espectroscopia eletrônica. Por diferença de concentração, determinou-se as quantidades dos complexos de Ru(III)-EDTA adsorvidos na superfície da sílica.

O agente complexante utilizado na análise espectrofotométrica foi o ligante etilenodiamina em meio etanol/água (adição de NaOH); com o valor da absortividade molar determinado primeiramente.

Os espectros de infravermelho das sílicas SF-AEATS e SF-AEATS/Ru(III) foram obtidos na região de 4000-1200 cm⁻¹, usando-se pastilhas dos materiais puros (~ 10mg/cm²), num espectrofotômetro BOMEM Hartmann & Braum, modelo MB-SERIES.

RESULTADOS E DISCUSSÃO

A funcionalização da sílica SF-AEATS foi obtida através da reação abaixo:

-Si(OH)₃ + (CH₃O)₃Si(CH₂)₃NH(CH₂)₂NH₂→(-SiO₃)Si(CH₂)₃NH(CH₂)₂NH₂ + 3CH₃OH

A quantidade de etilenodiamina ancorada na SF-AEATS, obtida pela análise de N foi 0.91 ± 0.01 mmol/g.

Os resultados encontrados para as áreas superficiais específicas da sílica pura e funcionalizada foram (506 ± 6) e (453 ± 6) m²/g, respectivamente, o que evidencia uma diminuição na área superficial devido à organofuncionalização. Isto ocorre porque os grupos ancorados que recobrem os poros da superfície da sílica fazem com que estes sejam menos acessíveis às moléculas de nitrogênio gasoso, durante a medida de área.

As atribuições das frequências vibracionais (cm⁻¹) da sílica pura ativada (SPA), e das sílicas SF-AEATS e SF-AEATS/Ru (III) (Figura 1) encontram-se na Tabela 1.

Tabela 1. Frequências vibracionais (cm⁻¹), da SPA, SF-AEATS e SF-AEATS-Ru(III).

SPA	SF-AEATS	SF-AEATS-Ru(III)	Atribuições
3385 (vs,b)	3385 (vs, b)	3380 (vs,b)	ν-ОН
	2950 (m)	2950 (m)	$v-CH_2$
1992 (w,b)	1992 (w,b)	1989 (w)	*
1869(m,b)	1869 (m,b)	1869 (w)	*
1636 (s)	1630 (s)	1625 (vs)	δ-НОН
- ` ´	1550 (s,sh)	` ,	δ -NH ₂
-	1475 (s)	1471 (m)	δ-CH ₂ -X-
-	1415(w)	sh	δ-Si-CH ₂
-	` ′	1389 (vw)	v_s -(COO ⁻)

(s) = forte; (m) = média; (b) = larga; * combinações de esqueleto da sílica; (v) = muito; (w) = fraca; (sh) = ombro

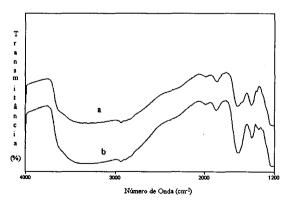


Figura 1. Espectro Vibracional das sílicas: SF-AEATS (a) e SF- AEATS/ Ru(II) (b).

Observou-se em todos os espectros vibracionais (Figura 1) uma banda forte e larga entre 3780 a 3000 cm⁻¹, característica

da vibração de estiramento simétrico do grupo (OH) da água e do grupo silano. Além desta, foram observadas duas bandas médias ao redor de 1900 cm⁻¹, atribuídas às combinações do esqueleto da sílica²¹.

Comparando-se os espectros da SF-AEATS e SF-AEATS/ Ru(III) observou-se o aparecimento de uma banda em 1389 cm⁻¹, atribuída ao estiramento simétrico para o grupo (COO) do complexo Ru(III)-EDTA. Embora não tenha ocorrido mudanças mais significativas nos espectros vibracionais, com a adsorção do complexo Ru(III)-EDTA, houve mudança visível de coloração, de branco para alaranjado, evidenciando a sua coordenação à molécula de etilenodiamina ancorada na sílica, provavelmente de forma monodentada.

As medidas relativas à adsorção do complexo H[Ru(III) $Cl_2(H_2EDTA)$] pela SF-AEATS, em etanol anidro, foram efetuadas conforme descrito na parte experimental. O valor de (N_f) é o número de mols de complexo de Ru(III)-EDTA coordenado à sílica modificada (SF-AEATS), ou seja uma medida do grau de cobertura para cada uma das condições experimentais utilizadas. O número máximo de mols do complexo adsorvido $N_f^{máx}$ é igual ao valor de N_f quando a concentração (C) do complexo tende a infinito, isto é, $N_f^{máx} = |N_f|_{C\to\infty}$ e cada N_f é calculado efetuando-se a diferença entre o número de mols de complexo adicionado (N_a) e o número de mols de complexo do sobrenadante (N_s) (não adsorvido), dividido pela massa de sílica funcionalizada (W), isto é,

$$N_f = \frac{(N_a - N_s)}{W} = \sum_{m} \frac{[(SF - AEATS)_m Ru(III)]}{W}$$

onde, $\Sigma_m[SF-AEATS)_m$ Ru(III)] corresponde ao número de mols de complexo adsorvido e a somatória se estende sobre todas as espécies sobre a superfície.

A adsorção do complexo de Ru(III)-EDTA contido em solução, depende dos coeficientes de seletividade dos complexos formados com o ligante imobilizado na superfície. O equilíbrio de formação do complexo de Ru(III)-EDTA com a etilenodiamina suportada na sílica foi estudado com base no modelo de Filippov²². Para isso considerou-se que:

- o suporte é uma matriz rígida com o ligante imobilizado, distribuído uniformemente na superfície.
- a estabilidade do complexo metálico é determinada somente por sua composição e independe do grau de cobertura da superfície efetuada por ele.
- é mantida a neutralidade elétrica nas duas fases, solução e suporte.
- o ligante está imobilizado e portanto sua concentração independe da diluição da suspensão pela solução.

A reação de formação do complexo na superfície pode ser representada genericamente pela equação^{22,23}

$$MX_z + nR \rightarrow MR_nX_z$$
 (2)

onde z \acute{e} a carga do fon metálico, X \acute{e} um ânion com carga unitária e R \acute{e} o grupo ligante, eletricamente neutro, imobilizado na superfície do suporte.

Para o equilíbrio (2), pode-se aplicar uma relação do tipo

$$\frac{\theta_{n}}{1-\theta_{n}} = \gamma_{n}.C \tag{3}$$

onde θ_n é a fração de ligante suportado ligado ao metal, sendo que:

$$\theta_{\rm n} = \frac{{\rm n.N_f}}{{\rm C_N}} \tag{4}$$

Nas equações 3 e 4 tem-se:

 $C_N = \acute{e}$ a concentração total do ligante imobilizado na superfície (mol/g).

n = é o número de ligantes suportados na sílica e simultaneamente coordenados a um íon metálico.

 γ_n = é o coeficiente de seletividade do complexo suportado, igual à razão entre as constantes de velocidade dos processos de sorção e dessorção do metal.

Fazendo-se as substituições na equação 3, seguidas de transformações, obtém-se:

$$\frac{1}{N_f} = \frac{n}{C_N \cdot \gamma_n \cdot C} + \frac{n}{C_N} \tag{5}$$

Considerando-se que o fon metálico (Ru(III)-EDTA), quando sorvido sobre a superfície (com cobertura homogênea de ligante), pode formar complexos imobilizados com diferentes razões entre ele e o ligante etilenodiamina ancorado, ou seja, MRX_z, MR₂X_z,....MR_mX_z, os coeficientes de seletividade destes complexos, γ_n podem ser definidos como:

$$\gamma_{1} = \frac{[MRX_{z}]}{[MX_{z}][R]}, \gamma_{2} = \frac{2[MR_{2}X_{z}]}{[MX_{z}][R]}, \dots, \gamma_{m} = \frac{m[MR_{m}X_{z}]}{[MX_{z}][R]}$$
(6)

e o número médio de ligantes suportados ligados a um íon metálico, será:

$$= \frac{[MRX_z] + 2[MR_2X_z] + + m[MR_mX_z]}{N_f}$$
 (7)

Levando-se em conta que a concentração total do ligante imobilizado na superfície é igual ao somatório das concentrações de todas as espécies, ou seja:

$$C_N = [R] + [MRX_Z] + 2[MR_2X_Z] + + m[MR_mX_Z]$$
 (8)

e que a concentração total de complexo adsorvido na superfície é:

$$N_{f} = [MRX_{Z}] + [MR_{2}X_{Z}] + + [MR_{m}X_{Z}]$$
(9)

a equação 5 pode ser escrita:

$$\frac{1}{N_f} = \frac{1}{C_N \cdot \Gamma \cdot C} + \frac{1}{C_N}$$
 (10)

onde $\Gamma_{\tilde{n}}$ é o coeficiente de seletividade igual a $\sum_{m=1}^{n} \gamma_{m}$

Assim, colocando-se num gráfico o recíproco da concentração do complexo sorvido sobre a superfície, $1/N_{\rm f}$, em função de 1/C (Figura 2) e sabendo-se o valor de $C_{\rm N}$, a partir da análise elementar de nitrogênio, obteve-se a partir dos coeficientes linear e angular os valores do número médio de ligantes imobilizados e simultaneamente coordenados a um fon metálico (ñ), o valor do coeficiente de seletividade ($\Gamma_{\rm fi}$) e o grau de cobertura máximo ($N_{\rm f}^{\rm max} = \lim_{C \to \infty} (\frac{1}{C})$).

Deve-se salientar que a linearidade observada na Figura 2 envolveu valores de grau de cobertura até 58,7 µmol/g, correspondente ao limite de saturação da adsorção e implicando em um valor de grau de cobertura máximo de 71,8 µmol/g.

O valor encontrado para o número médio de ligantes imobilizados ligados ao complexo Ru(III)-EDTA (\tilde{n}) foi 1,26 e para o coeficiente de seletividade ($\Gamma_{\tilde{n}}$) 2,07 x 10⁴ L/mol.

Com este trabalho foi possível a caracterização da adsorção química do íon complexo [Ru(III)Cl₂((EDTA)]₃- na superfície

da sílica, ligado covalentemente à etilenodiamina ancorada na superfície da sílica gel (SF-AEATS).

A partir desses resultados nosso grupo de pesquisa efetuou estudos de eletrodos quimicamente modificados (EQMs), construídos com pasta de carbono e a sílica SF-AEATS/Ru(III), que serão abordados em um artigo futuro.

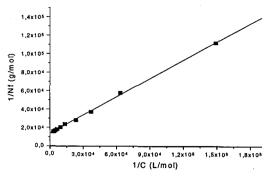


Figura 2. Dependência de 1/Nf em função de 1/C de acordo com dados de adsorção do complexo H[Ru(III)Cl₂(H₂EDTA)] sobre a SF-AEATS, em solução etanólica, a 25,0°C

AGRADECIMENTOS

Ao CNPq pelo auxílio financeiro e à CAPES pela bolsa de pós-graduação.

REFERÊNCIAS

- 1. Murray, R.; Acc. Chem. Res. 1980, 13, 135.
- Peixoto, C. R. M., Kubota, L. T.; Gushikem, Y.; Anal. Com. 1995, 32, 503.
- Deschler, U.; Kleinschmit, P.; Panster, P.; Angew. Chem.; Int. Ed. Engl. 1986, 25, 236.
- Trevisan, H. C.; Mei, L. H. I.; An. Acad. Bras. Ci 1992, 64, 111.
- Tundo, P., Venturello, P.; Angeletti, E.; J. Am. Chem. Soc. 1982, 104, 6547.
- 6. Gilpel, M.; Unger, K. K.; Chromatographia 1982, 16, 117.
- 7. Gilpel, M.; Unger, K. K.; Chromatographia 1983, 27, 200.
- Gushiken, Y.; Peixoto, C. R. M.; Filho, U. P. R.; Kubota,
 L. T.; Stadler, E.; J. Colloid Interface Sci. 1996, 184, 236.
- 9. Oyama, N.; Anson, F. C.; J. Am. Chem. Soc. 1979, 1634.
- 10. Toma, H. E.; Sernaglia, R. L.; Talanta 1993, 40, 515.
- 11. Toma, H. E.,; Sernaglia, R. L.; Talanta 1995, 42, 1867.
- 12. Sernaglia, R. L.; Tese de Doutoramento, IQ-USP 1992.
- Yoshino, Y.; Uehiro, T.; Saito, M.; Bull. Chem. Soc. Jpn. 1979, 52, 60.
- Mukaida, M.; Okuno, H.; Ishimori, T.; Nippon Kagaku Sasshi 1965, 86, 589.
- Speler, J. L.; Roth, C. A.; Ryan, J. W.; J. Org. Chem. 1971, 21, 3125.
- 16. Airoldi, C.; Gonçalves, A. S.; Coll. and Surf. 1987, 28, 199.
- 17. Perrin, D.; Armarego, W. L. F.; "Purification of Laboratory Chemicals", Pergamon Press Ltda 1980.
- Skopenko, V. V.; Trofimchuk, A. K.; Kaminskii, V. P.; Soviet Prog. Chem. 1982, 48, 14.
- 19. Scott, R. P. W.; Faraday Symp. Chem. Soc. 1980, 15, 49.
- Unger, K. K.; Becker, N.; Roumeliotis P.; J. Chromatogr. 1976, 125, 115.
- Iler, R. H.; "The Chemistry of Silica", Wiley. New York 1979.
- 22. Filippov A. P.; Theor. Exp. Chem. 1984, 19, 427.
- 23. Costa, C. M. M.; Pesco, C.; Quím. Nova 1993, 16, 20.