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A STRUCTURAL BRIDGE BETWEEN ALTERNANT AND NON-ALTERNANT HYDROCARBONS
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A simple set of trimethylene-substituted even, fully-π-bonded, non-alternant monocycles is shown to
have several key features in common with acyclic, even alternant polyenes at the Hückel level. These
non-alternant molecules provide a bridge between alternant and non-alternant hydrocarbons. This topic
might serve as a useful addition to Hückel theory courses targeted at senior undergraduate students.

Keywords: Chemical graph theory, Hückel theory, non-alternant hydrocarbon, alternant hydrocarbon.

EducaçãoQuim. Nova, Vol. 24, No. 3, 416-418, 2001.

INTRODUCTION

The longest-known and most-widely disseminated approach
to molecular orbital calculations on planar hydrocarbons is due
to Hückel1. One of the most important distinctions made at the
Hückel level is that between alternant (e.g. 1) and non-alternant
hydrocarbons (e.g. 2).

Polynomials for even, non-alternant hydrocarbons do not
normally have any pairs of roots equal in magnitude but
opposite in sign and do have non-zero coefficients for one or
more terms that have odd exponents. Equation (3) presents the
polynomial for the non-alternant hydrocarbon 2.

x6-6x4+2x3+8x2-4x-1=0; (2)
roots: -2.228; -1.360; -0,186; 1; 1; 1.775

Typically, when students are introduced to Hückel theory,
alternant and non-alternant hydrocarbons are presented as
distinct structural types. To the best of my knowledge, no
intermediate or bridging structures have been previously
described at the Hückel level. I began to seek such bridging
structures in the hope that discussions of them in theoretical
organic chemistry lectures would provide a smooth transition
from one type of molecule to the other.

Amongst the well-known Hückel-level differences between
alternant and non-alternant hydrocarbons are (i) the
aforementioned root pairs characteristic of even alternant
hydrocarbon polynomials and (ii) the pronounced topological
polarization characteristic of non-alternant hydrocarbons.
These properties will be employed to guide the search for
bridging structures.

RESULTS AND DISCUSSION

The Pairing Theorem5 rules out any possibilty of Hückel-
level even, alternant, fully-π-bonded hydrocarbons which do
not have polynomial root pairs that are equal in magnitude and
opposite in sign. Furthermore, it requires that every carbon in
an even, fully-π-bonded alternant hydrocarbon be exactly
neutral. Hence, alternant hydrocarbons of that type cannot have
polarized π-systems at the Hückel level. The search for
bridging structures must focus on non-alternant hydro-
carbons which might mimic alternant structures.

Given the sample polynomials in equations (2) and (3), it
would seem sensible to seek non-alternant hydrocarbons which
have polynomials as similar to those for alternant hydrocarbons
as possible i.e. the number of terms with odd exponents should
be minimized.

With a graph-theoretical analysis, using established
principles7,8, it can be shown that there will be only one odd-
exponent term in the polynomial for any fully-π-bonded,
even, non-alternant monocycle in which all sigma bonds
involve at least one ring carbon. (This condition permits only
one valid cyclic Sachs’ graph for each compound). The
simplest possible example, compound 3, and its polynomial
are shown in Figure 1.

Non-alternant hydrocarbons invariably feature at least one
ring constructed with an odd number of carbon atoms, whereas
alternant hydrocarbons have no such rings2-4.

To begin to obtain the Hückel description for a hydrocarbon
with n carbon atoms, in the traditional manner, one must (i)
produce a set of n homogeneous linear equations, (ii) generate
an n×n secular determinant and (iii) diagonalize the determinant
to obtain an nth order polynomial. It is this polynomial which
determines the molecular orbitals (eigenfunctions) and their
energies (eigenvalues) at the Hückel level. The polynomials for
alternant and non-alternant hydrocarbons are distinctly different.

From the Pairing Theorem5, it can be shown that the
polynomial roots for an even alternant hydrocarbon occur in
pairs whose absolute values are the same but whose signs are
opposed. Hence, as observed earlier6, the polynomial for an
even alternant hydrocarbon must have the form shown in
equation (1).
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n where the number of carbon atoms in the π system; ri is the
ith root of the polynomial of interest.

When equation (1) is expanded, it must produce
polynomials in which non-zero coefficients are exclusively
associated with terms that have even exponents. As an
example, equation (2) presents the polynomial for the
alternant hydrocarbon butadiene 1.

x4-3x+2=0; roots: ±1.618; ±0.618 (2)
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Even, fully-π-bonded, alternant hydrocarbons do not have
polarized π-systems at the Hückel level. Small molecules like 3
(non-alternant monocycle with a single exocyclic methylene) have
substantial Hückel polarization (see Figure 1). I propose to use
the sum of the partial positive charges (q+) to measure Hückel
framework polarization for even non-alternant hydrocarbons.

Even, alternant hydrocarbon polynomials have root pairs ±ri.
If the individual pairs are summed, each sum would be zero.
Hence, the average of these sums would also be zero. The
average of the absolute values of the corresponding polynomial
root pairs for 3 is not close to zero. Table 1 presents averaged
polynomial root pair sums (∆E) and the sum of q+ (Σq+) for
a selection of non-alternant monocycles 4.

It was shown there, that such non-alternant monocycles
largely lose their Hückel-level polarization if more than one
odd substituent is attached to the ring.

In accord with earlier discussion herein, structural
modification involved the introduction of two additional
methylene groups (see structure 5). Examination of a series of
compounds 5 furnished the data in Table 2.

Figure 1.

Inspection of the Table 1 data suggests that molecules 4,
for which n is very large, will have ∆E and Σq+ values very
near the alternant ideal value of zero. However, the persistence
of significant magnitudes for Σq+, even in relatively large non-
alternant monocycles has prompted an examination of non-
alternant monocyclic relatives of 4.

In an earlier study9, we have described the application of
perturbation theory to the problem of anticipating topo-
logically-induced polarity in even, fully-π-bonded, non-
alternant monocycles.

Table 2. Hückel calculated ∆Ea and Σq+
b for non-alternant

monocycles 5.

n Ring Size ∆E Σq+

0 3 0.667 0.187
1 5 0.319 0.099
2 7 0.238 0.059
3 9 0.193 0.039
4 11 0.167 0.026
5 13 0.153 0.018
6 15 0.130 0.014
7 17 0.116 0.011
8 19 0.105 0.008
9 21 0.097 0.007
10 23 0.092 0.005
11 25 0.083 0.004

a∆E: average of absolute values of sum of polynomial root
pairs r1,rn; r2,rn-1; r3,rn-2;......; 

bΣq+: sum of partial positive
charges for the structure.

A comparison of the data in Tables 1 and 2 shows that
structures 5 are slightly superior to structures 4 with regard to the
average of the polynomial root sums. Structures 5 are much less
polar than structures 4 as measured by Hückel Σq+ values. Hence,
structures 5 constitute a set of monocycles which are better mimics
of alternant hydrocarbons. Algebraically, each polynomial for
structures 4 and 5 has a single term with an odd exponent whose
coefficient is always +2. As the monocycles become larger and
larger, the coefficients for even exponent terms in the polynomial
become larger and larger e.g. the x12 coefficient for 5 (n=10) is
54,028. The impact of the odd exponent term on the description
produced from the polynomial becomes smaller and smaller so
that the description for larger monocycles matches that for an
alternant structure more precisely.

An ordered set of alternant-hydrocarbon-like non-alternant
molecules can now be constructed beginning with structures 5
(n is large) which will have very small ∆E values and no
Hückel-level polarity. As the structures shrink, polynomial root
pair differences will increase and the framework will become
more and more strongly polarized. The alternant - non-alternant
bridge might be completed by adding on the set of structures
4 (n=7 → n=1) which begins with framework polarization
equal to 5 (n=0) and increases it further.

Insight into the chemistry associated with a given structure
is accessible from the frontier molecular orbitals of that
structure10,11. Commonly, students are required to memorize
the nodal patterns of the frontier orbitals of a few familiar

Table 1. Hückel calculated ∆Ea and Σq+
b for non-alternant

monocycles 4.

n Ring Size ∆E Σq+

1 3 0.689 0.488
2 5 0.412 0.378
3 7 0.294 0.310
4 9 0.229 0.265
5 11 0.188 0.232
6 13 0.159 0.206
7 15 0.138 0.186
8 17 0.122 0.169
9 19 0.110 0.156
10 21 0.100 0.143
11 23 0.091 0.134
12 25 0.084 0.125

a∆E: average of absolute values of sum of polynomial root
pairs r1,rn; r2,rn-1; r3,rn-2;......; bSq+: sum of partial positive
charges for the structure
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acyclic polyenes - ethylene, butadiene and hexatriene.
Butadiene and ethylene frontier molecular orbitals are
particularly useful for introductory discussions of Diels-Alder
reactions. Earlier9, we have enunciated a very simple method
for deducing the HOMO and LUMO nodal properties for any
even, acyclic polyene. The HOMO is a linear combination of
ethylene HOMO’s, embedded on the polyene framework so
that only antibonding interactions occur between ethylene units.
The LUMO is a linear combination of ethylene LUMO’s,
embedded on the polyene framework so that only bonding
interactions occur between ethylene units. Figure 2 shows this
method as it applies to the branched polyene 6.

Figure 2. Construction of the frontier orbitals of 6 using ethylene
frontier orbitals.

This same method works nicely to afford the nodal patterns
for the frontier orbitals of structures 4 and 5. Figure 3 presents
an example of the method applied to one representative
structure of each type.

Note that zero coefficients are required for an ethylene unit
which cannot be positioned in the HOMO so as to have only
antibonding interactions with its neighbors. Similarly, such a unit
must have zero coefficients when it cannot be positioned in the
LUMO so as to have only bonding interactions with its neighbors.

In summary, a set of non-alternant hydrocarbons 5 has been
recognized. Very large members of this set have polynomial root
pairs (r1,rn; r2,rn-1;...) which are very similar in absolute value.

These molecules have essentially no polarity at the
Hückel level. Furthermore, the nodal patterns of their
frontier orbitals can be deduced by embedding the HOMO
with ethylene HOMO’s and the LUMO with ethylene
LUMO’s. In all these ways, very large members of
compounds 5 are very much like alternant, acyclic polyenes.
As one proceeds through the set to smaller and smaller
members, the structures 5 become more and more strongly
polarized and the absolute values of their polynomial root
pairs separate in magnitude (see Table 2). Ultimately, the
smallest member (5, n=0, three-membered ring) is polarized
to the same extent that its simpler non-alternant cousin is
(4, n=7, fifteen-membered ring).
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Figure 3. Construction of the frontier orbitals of 4 (n=3) and 5
(n=2) using ethylene frontier orbitals.


