CONSTITUINTES QUÍMICOS ISOLADOS DE *SIMIRA GLAZIOVII* (K. SCHUM) STEYERM. E A ATRIBUIÇÃO DOS DESLOCAMENTOS QUÍMICOS DOS ÁTOMOS DE CARBONO E HIDROGÊNIO DO ALCALÓIDE OFIORINA E SEUS DERIVADOS

Ana Beatriz F. D' O. Bastos, Mário Geraldo de Carvalho* e Javier Rincón Velandia

Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, 23851-970 Seropédica - RJ Raimundo Braz-Filho

Setor de Química de Produtos Naturais, LCQUI, CCT, Universidade Estadual do Norte Fluminense, 28015-620 Campos - RJ

Recebido em 18/12/00; aceito em 10/9/01

CHEMICAL CONSTITUENTS FROM *SIMIRA GLAZIOVII* (K. SCHUM) STEYERM. AND ¹H AND ¹³C NMR ASSIGNMENTS OF OPHIORINE AND ITS DERIVATIVES. Chromatographic fractionation of bark extracts from *Simira glaziovii* (Rubiaceae) afforded the steroids β -sitostenone, stigmastenone, β -sitosterol and stigmasterol, methyl *trans*-4-hidroxy-3-methoxycinamate (1), the alkaloids harmane (2) and the new stereoisomer of ophiorine B (3). The structures were established by ¹H and ¹³C NMR, including 2D techniques and mass spectral analysis, of the natural products and pentaacetyllyalosidic acid (4a) and β -carboline monoterpene tetraacetylglucoside (5, 1,22-lactamlyaloside) derivatives obtained by chemical transformations.

Keywords: Simira glaziovii; Rubiaceae; steroids; harmane; (-)-ophiorine.

INTRODUÇÃO

Plantas do gênero *Simira* vem despertando interesse devido principalmente às atividades fototóxicas apresentadas por alguns de seus constituintes químicos e pelas informações etnomédicas sobre o tratamento de manchas na cavidade oral e dentária¹ com cascas frescas de *S. rubescens*. A literatura registra resultados de estudos químicos das espécies *S. Maxonii*²⁻⁴, *S. mexicana*⁵, *S. Salvadorensis*⁶ e *S. rubra*⁶. Foram identificados, além de policetídeos, alcalóides fotossenbilizantes furoquinolínicos e β-carbolínicos^{5.6}. Os alcalóides harmana, maxonina e estrictosamida aparecem como os mais comuns neste gênero⁷.

Este artigo descreve o primeiro estudo fitoquímico de um espécimen de *S. glaziovii* (K. Schum) Steyerm, que permitiu o isolamento e a caracterização dos esteróides β -sitostenone, estigmastenone, β -sitosterol and estigmasterol, 3,4-dimetoxicinamato de metila (1), o alcalóide harmana (2), conhecido como 1-metil- β -carbolina, aribina, loturina ou passiflorina, isolado anteriormente de *Arariba rubra* e *Passiflora incarnata*⁷, e o alcalóide ofiorina B (3), encontrado em *Ophiorrhiza japonica* e *O. kuroiwai* (Rubiaceae)⁸. Com exceção do alcalóide harmana, os demais constituintes estão sendo caracterizados pela primeira vez no gênero *Simira*.

O tratamento do alcalóide ofiorina (**3**), epímero no átomo de carbono C-16 da ofiorina A (**3a**), com diazometano (CH_2N_2) forneceu o produto rearranjado conhecido como lialosídeo (**4**). A preparação dos dois novos derivados da ofiorina B (**4a** e **5**) e a análise dos dados espectrométricos de RMN ¹H e ¹³C (1D e 2D) permitiu caracterizar o alcalóide **3** e estabelecer a completa atribuição dos deslocamentos químicos dos átomos de hidrogênio e carbono, eliminandose inclusive equívocos registrados na literatura.

RESULTADOS E DISCUSSÃO

O fracionamento cromatográfico do extrato metanólico das cascas de *S. glaziovii* forneceu além dos alcalóides harmana (2) e (-)-

ofiorina (3), a mistura de β -sitosterol, estigmasterol e 3,4-dimetoxicinamato de metila (1). O alcalóde 3 apresentou dados espectrométricos semelhantes aos da (+)-ofiorina B já registrada na literatura⁸ e, levando em consideração de que se trata de um glicosideo natural, identificou-o como o novo estereoisômero deste alcalóide. Do extrato hexânico foi identificada a mistura de sitostenona e estigmastenona. Os derivados **4a** e **5** estão sendo registrados pela primeira vez na literatura.

Os esteróides, o éster **1** e o alcalóide harmana (**2**) foram identificados através da análise dos dados fornecidos pelos espectros IV e RMN ¹H e ¹³C comparados com valores registrados na literatura⁹⁻¹⁵.

O espectro de RMN ¹H de **3** mostrou sinais de seis hidrogênios aromáticos da unidade β -carbolínica. Picos transversais correspondentes às interações heteronucleares de átomos de carbono e hidrogênio observados nos espectros 2D HMQC (¹J_{CH}) e HMBC (^{2,3}J_{CH})] permitiram identificar os sinais dos carbonos hidrogenados e quaternários desta unidade aromática (C₁₁H₂N₂), Tabela 1. Além disso, a análise dos espectros de RMN ¹H e ¹³C (1D e 2D) conduziu às seguintes deduções: a) A presença do grupo vinila foi reconhecida pelos sinais dos carbonos: metínico CH-18 [$\delta_{\rm C}$ 134,70 e $\delta_{\rm H}$ 5,76 (ddd, 6,4, 10,8 e 17,2 Hz)] e metilênico CH₂-19 $[\delta_{C} 120,90 \text{ e } \delta_{H} 5,25 \text{ (d, 10,8 Hz) e } 5,27 \text{ (d, 17,2)}$ Hz)]; b) A unidade de β-glicopiranosila foi proposta através dos sinais dos átomos de carbono oxigenados metínicos CH-1' [δ_c 99,74 e δ_{μ} 4,34 (d, 8,8 Hz, H-1' em posição axial), carbono anomérico], CH-2' [δ_c 73,15 e 2,90 (t, J=8,8 Hz)], CH-3' [$\delta_{\rm C}$ 76,76 e $\delta_{\rm H}$ 3,10 (m)], CH-4' [$\delta_{\rm C}$ 69,80 e $δ_{\rm H}$ 3,00 (m)] e CH-5' [$δ_{\rm C}$ 77,00 e $δ_{\rm H}$ 2,80 (m)] e metilênico CH₂-6' [$δ_{\rm C}$ 60.57 e $\delta_{\rm H}$ 3,51 (m) e 3,20(m)]. A comparação destes dados espectrométricos com valores registrados na literatura⁸ para alcalóides βcarbolínicos glicosilados contendo grupo vinila permitiu destacar a presença de sinais remanescentes nos espectros de RMN ¹³C em δ_{CH} 94,22, 89,00 (carbinólicos), 47,64, 46,59 e 31,04 e δ_c 175,60 (compatível para ácido carboxílico). Estes dados revelaram-se semelhantes aos deslocamentos químicos descritos para os alcalóides ofiorinas A e B (Tabela 1). Surpreendentemente, o sinal do CH2-14 não foi detectado no espectro registrado em D₂O, sendo observado em δ_c 24,00 (CH₂) no espectro registrado em MeOH- d_A . O pico em m/z 513 ([M+1], 55%, C₂₆H₂₀O₀N₂ Esquema 1) observado no espectro de massas (FAB-MS) revelou-se em acordo com a formula molecular C26H28O6N2 correspondente às estruturas destas substâncias alcaloídicas. A análise comparativa dos dados obtidos dos espectros de RMN¹H e ¹³C registrados em D₂O (Tabela 1), incluindo-se experimentos 1D e 2D (HMQC e HMBC), permitiu distinguir entre os dois epímeros ofiorinas B (**3**) e A (**3a**), caracterizando-se o alcalóide indólico isolado de *Simira glaziovii* como ofiorina B (**3**) e fazer as atribuções inequívocas dos deslocamentos químicos dos carbonos desta substância. A leitura da rotação óptica de **3**, $[\alpha]_{\rm D}$: -13,95 (c 0,043, MeOH), a igualdade entre os valores dos deslocamentos químicos de ¹H e ¹³C com os da ofiorina B registrada na literatura⁸ e levando em consideração de se tratar de um glicosídeo natural postulou-se a configuração (-)-ofiorina para a substância isolada de *S. glaziovii* e correspondendo a um novo estereoisômero da (+)ofiorina B registrada na literatura com $[\alpha]_{\rm D}$: +18,0⁸.

A análise detalhada dos espectros de massas confirmou a facilidade de fragmentação do alcalóide **3** no espectrômetro de massas. O espectro obtido com ionização por FAB-MS (glicerol como matriz, Esquema 1) revelou diferenças significativas quando comparado com o registrado por ionização química (CI-MS, Esquema 2). O FAB-MS mostrou o pico [M+1] em *m*/z 513 (55%, $C_{26}H_{29}O_9N_2$), e picos adicionais em *m*/z 469 [5%, *m*/z 513 – 44 (CO₂), $C_{25}H_{29}O_7N_2$], 351 [15%, *m*/ z 513 – 162 ($C_6H_{10}O_5$), $C_{20}H_{19}O_4N_2$], 307 [27%, *m*/z 513 – 44(CO₂) – 162 ($C_6H_{10}O_5$) e/ou *m*/z 513 – 162 ($C_6H_{10}O_5$) – 44(CO₂), $C_{19}H_{19}O_2N_2$], 219 (59%, $C_{15}H_{11}N_2$), 182 (60%, $C_{12}H_{10}N_2$) e 133 [100%, $C_5H_9O_4$],

Tabela 1. Dados de RMN¹H (400 MHz) e ¹³C (100 MHz) de **3** e comparação com os deslocamentos químicos de carbono-13 das ofiorinas A (**3a**) e B (**3**) registrados na literatura⁸ (solvente D_2O)*

			3				
	δ_{C}^{8}			HMQC	HMBC		
С	3 a	3	δ_{c}	$\delta_{_{\rm H}}$	${}^{2}J_{CH}$	³ J _{CH}	
2	134,8	135,6	135,9	-	-	H-6	
3	146,6	146,4	138,8	-	-	H-5,H17	
5	136,9	136,8	133,3	8,6 (d,J=6,8)	H-6	H-17	
6	135,9	135,8	118,0	8,3 (d,J=6,8)	H-5	-	
7	140,2	140,4	130,2	-	-	H-5,H9	
8	122,1	121,9	119,2	-	-	H-6,H-10,H-12	
9	124,6	124,5	123,4	8,1 (d,J=8,0)	-	H-11	
10	119,2	119,2	122,7	7,1 (t,J=8,0)	-		
11	125,5	125,5	132,6	7,4 (t,J=8,0)	-	-	
12	115,4	115,3	113,3	7,6 (d,J=8,0)	H-11	H-10	
13	135,8	134,7	144,1	-	-	H-9,H-11	
14	26,0	29,1	24,0 ^b	3,5	-	-	
15	33,0	33,3	31,0	3,0 (m)	-		
16	49,8	47,4	46,6	3,3	-	H-14	
17	91,7	91,5	89,0	6,6 (sl)	H-16	H-5	
18	134,8	134,8	134,7	5,7 (dd,J=6,4;10,8;17,2)	2H-18	-	
19	121,9	122,3	120,9	5,2 (dl,J=10,8)			
				5,3 (dl,J=17,2)			
20	48,8	46,0	47,6	2,8 (m)	-	2H-19,H-16,H-1'	
21	98,2	98,2	94,2	4,6 (d,J=9,6)	-	H-17,H-19	
22	176,9	177,4	175,6	-	H-16	-	
1'	101,8	102,2	99,7	4,4 (d,J=8,8)	H-2'	-	
2'	75,4	75,4	73,5	2,9 (t,J=8,8)	H-3'	-	
3'	78,8	78,9	76,6	3,1 (m)	H-2'	-	
4'	72,2	72,2	69,8	3,0 (m)	H-3'		
5'	78,4	78,3	77,0	2,8 (m)	H-4'		
6'	63,3	63,2	60,6	3,5(m)	-	-	
				3,2(m)	-	-	

*Os sinais de átomos de carbono C, CH e CH₃ foram reconhecidos pela análise comparativa dos espectros de RMN ¹³C-HBBD e RMN ¹³C-DEPT. O espectro 2D ¹H-¹H-COSY foi também utilizado. Os deslocamentos químicos e constantes de acoplamento (J) dos sinais de hidrogênio foram deduzidos do espectro 1D de RMN¹H. ^b.sinal observado no espectro obtido em MeO-D₄.

Esquema 1. Proposta de fragmentação do alcalóide **3** no espectrômetro de massas usando ionização por FAB (modo positivo, glicerol como matriz)

como resumido no Esquema 1. No CI-MS o pico *m/z* 513 ([M+1]) não foi observado e os picos principais apareceram em *m/z* 335 [10%, *m/z* 513 ($C_{26}H_{29}O_9N_2$) – 178 ($C_6H_{10}O_6$), 329 [27%, *m/z* 513 – 184 ($C_5H_{12}O_7$), $C_{21}H_{17}O_2N_2$], 317 [92%, *m/z* 335 – 18 (H₂O), $C_{20}H_{17}O_2N_2$] e 307 [100%, *m/z* 335 – 28 (CH₂=CH₂), $C_{18}H_{15}O_3N_2$] (Esquema 2). Todos estes picos podem ser atribuídos a fragmentos formados através de reações relativamente simples, informativas e previstas pela estrutura **3**, como revelam resumidamente os Esquemas 1 e 2.

A reação de **3** com diazometano forneceu o produto rearranjado lialosilato de metila (**4**)¹⁶, como descrito na literatura⁸. A formação deste produto serviu como um dado adicional para confirmação da estrutura proposta.

A acetilação de **3** com anidrido acético na presença de piridina forneceu dois produtos (**4a** e **5**). A análise dos dados espectrométricos obtidos por RMN ¹H e ¹³C e comparação com os valores atribuídos para o alcalóide **3** permitiu propor as estruturas **4a** e **5** para os derivados acetilados (Tabelas 2 e 3).

As informações obtidas dos espectros 2D (HMQC e HMBC) dos produtos 4a e 5 permitiram identificar os sinais dos átomos de carbono hidrogenados e quaternários da unidade β-carbolínica e verificar as diferenças correspondentes às estruturas de 3 e 4a e 5 (Tabelas 2 e 3). As principais diferenças entre os dados dos produtos 4a e 5 e a ofierina B (3) podem ser resumidas com base na: a) ausência dos sinais de átomos de carbono em δ_c 89,0 (CH-17) e 46,59 (CH-16) e hidrogênio em $\delta_{\rm H}$ 6,6 (sl, H-17) e 3,3 (m, H-16) nos espectros de 4a e 5; b) presença dos sinais do CH-17 [4a/5: $\delta_{\rm C}$ 147,6/150,9 e $\delta_{\rm H}$ 6,95 (d, 2,8 Hz)/7,80 (d, 2,8Hz)] e C-16 (**4a/5**: $\delta_{\rm C}$ 114,6/112,6); c) ausência do sinal em δ_c 175,6 (C-22) nos espectros dos produtos (4a e 5) e a presença dos sinais de átomos de carbono carbonílicos (C-22) envolvidos em sistemas conjugados α , β -insaturados (4a/5: δ_c 167,7/166,3). Os espectros HMBC revelaram picos transversais correlacionando interação spin-spin através de três ligações (3JCH) entre os sinais de C-22 (**4a/5**: δ_{C} 167,7/166,3) e H-17 [**4a/5**: δ_{H} 6,95

Esquema 2. Proposta de fragmentação do alcalóide **3** no espectrômetro de massas usando ionização química (CI)

(d, 2,8 Hz)/7,80 (d, 2,8Hz)] (item b); d) os deslocamentos químicos e a multiplicidade dos sinais dos carbonos metínicos e metilênicos da unidade β -glicopiranosídica revelaram-se compatíveis com a presença dos quatro grupos acetoxílicos (Tabelas 2 e 3); e) a análise adicional da região de absorção dos grupos acetoxílicos [(AcO)₅ em **4a** e (AcO)₄ em **5**] nos espectros HMQC e HMBC, facilitada através de expansões espectrais, permitiu reconhecer os sinais dos átomos de carbono e hidrogênio ligados entre si (¹J_{CH}) nos grupos metílicos (²J_{CH}) das unidades acetoxílicas.

Todos estes dados e a avaliação da reação realizada por tratamento de **3** em meio básico permitiram postular a formação de **4** como consequência da abstração inicial do H-16, a formação ligação dupla entre os átomos de carbono C-16 e C-17 e a neutralização da carga positiva localizada no nitrogênio N-4. A acetilação posterior de **4a** produziu o derivado **5**. O ataque nucleofílico do átomo de nitrogênio N-1 no carbono carbonílico C-22 justifica a ciclização e, consequentemente, a formação do produto **5** (Tabelas 2 e 3).

PARTE EXPERIMENTAL

Procedimentos experimentais gerais: Os pontos de fusão foram determinados em placa aquecida de Kofler e não foram corrigidos. Os espectros infra-vermelho (IV) foram registrados em pastilhas de KBr no espectrômetro 1420 da Parkin-Elmer. Os espectros de RMN foram registrados nos aparelhos UN-400 (¹H: 400 MHz e ¹³C: 100 MHz) da Varian e AC-200 (¹H: 200,13 MHz e ¹³C: 50,3 MHz) da Bruker. Os espectros de massas foram obtidos em um espectrômetro VG-Quatro. Nas separações cromatográficas em coluna e camada fina analítica e preparativa usou-se sílica gel da Aldrich ou Merck com granulação adequada. As placas cromatográficas foram reveladas com luz UV (λ_{max} 254 nm), vapores de iodo e/ou solução alcoólica de vanilina e ácido sulfúrico.

HMBC HMQC $\delta_{\underline{H}}$ С $^2J_{CH} e \ ^3J_{CH}$ ¹Hx¹H-COSY δ 2 134,7 H-6 _ 3 144,3 H-5 5 8,56 (d; 4,8) H-6 143,16 113,2 7,45 (d; 4,8) H-5 H-5 7 H-9: H-5 133.4 8 124,2 H-10 9 120,8 7,99 (d; 8,0) H-11 H-10; 10 7,44 (t; 8,0) H-12 H-9; H-11 1246 11 130.2 H-9 H-10; H-12 7,61 (t; 8,0) 12 118,5 8,58 (d; 8,0) H-10 H-11 13 140,7 H-11; H-9 2,20 (m) 14 33,9 15 34,8 4,50 (ddd; 4,4; 3,2;-) H-20 16 114.6 H-17; H₀ 17 1476 6,95 (d; 2,8) H-21 18 131,5 5,42 (ddd; 16,0; H-21 H-19; H-20 10,0; 8,0) 19 120,4 5,30 (dd; 16,0; 2,0) H-19b,19a 5.40(m) 2042.9 5,04 (dd; 8,0; 2,0) 21 95.5 2,97 (dm; 6,0) H-15; H-18 22 H-17 167,7 1' 95.8 4,96 (d; 8,0) H-2' 2' 3' 70,3 5,04 (t; 8,0) H-1'; H-3' 72,2 5,30 (t; 9,6) H-2'; H-4' 4' 5,13 (t; 9,0) H-3'; H-5' 68.2 5' 3,80 (dm; 12,8; 2,4) H-4'; H-6' 72,3 6' 61,7 4.20 (dd; 12,8; 2,4) H-5'; H-6'b H-5'; H-6'a 4,37 (dd, 12,8; 4,8) H_{CCO} 20,9; 20,7; 20,6; 20,5; 17,8 2,36; 2,23; 2,10; 2,08; 1,84 H,C-CO H,C<u>C</u>O 170,6; 170,0; 169,7; 169,5; 169,3

Tabela 2. Dados de RMN ¹H (400 MHz) e ¹³C (100 MHz) do produto acetilado 4a*

*Os sinais de átomos de carbono C, CH e CH₃ foram reconhecidos pela análise comparativa dos espectros de RMN ¹³C-HBBD e RMN ¹³C-DEPT. Os deslocamentos químicos e constantes de acoplamento (J em Hz entre parenteses) dos sinais de hidrogênio foram deduzidos do espectro 1D de RMN ¹H.

Planta: O material vegetal foi coletado na reserva florestal de Tinguá, Nova Iguaçu, RJ, Brasil pelo Professor S. J. da Silva Neto (IB – UFRRJ). A identificação foi feita através de comparação com a excicata (N° 1513) depositada no herbário do Departamento de Botânica do Instituto de Biologia – UFRRJ.

Extração e separação: As cascas de *S. glaziovii* (K. Schum) Steyerm. foram secas e moídas (930 g) e submetidas à extração através de maceração com hexano até exaustão e depois com metanol. As soluções dos extratos foram concentradas em evaporador rotativo sob vácuo, obtendo-se os resíduos dos extratos hexânico (SGCH, 600 mg) e metanólico (SGCM, 95,7g).

O extrato metanólico foi fracionado por cromatografia em coluna de sílica gel. Foram coletadas 71 frações e reunidas em grupos após análise através de cromatografia em camada fina analítica. Os grupos de frações foram monitorados por bioensaio de letalidade com *Artemia salina*¹⁷, identificando-se as propriedades tóxicas das frações investigadas. O grupo das frações reunidas 26-32 revelou maior toxicidade (DL₅₀ = 223 ppm), enquanto os demais não apresentaram índice significativo de toxidez (DL₅₀ \cong 1500).

A fração 11-12 foi cristalizada em metanol e obteve-se um material branco cristalino (55 mg) constituído de uma mistura dos esteróides β -sitosterol e estigmasterol e do éster metílico **1**.

A fração 26-32 (21,7g) foi submetida a fracionamento cromatográfico em coluna de sílicagel, usando-se clorofórmio e metanol como eluentes. Foram coletadas 64 frações. A fração 7 (278,0 mg), que revelou o maior grau de pureza, foi submetida à purificação através de cromatografia em camada delgada preparativa e obteve-se o alcalóide 2 (50 mg, PF 230-231 °C).

A fração 36-43 foi dissolvida em metanol a quente e após o resfriamento da solução forneceu o alcalóide **3** como um precipitado amarelo (4,0 g), pf 178-180 °C, $[\alpha]_{p}$: -13,95 (c 0,043, MeOH).

O extrato SGCH (560 mg) foi fracionado através de cromatografia em camada preparativa circular (Chromatotron), usando-se clorofórmio puro como eluente. Obteve-se 25 frações, que foram reunidas em 9 grupos após análise através de cromatografia em camada fina com diferentes eluentes. A análise das frações com espectros IV e RMN ¹H permitiu identificar uma mistura de material alifático e uma mistura de sitosterona e estigmasterona.

Metilação de 3: O alcalóide **3** (100 mg) foi dissolvido em metanol e adicionou-se diazometano em excesso. Após a evaporação do solvente e a análise dos dados fornecidos por espectros de RMN ¹H e ¹³C do produto confirmou-se a formação do lialosídeo **4** (100 mg)¹⁶, em acordo com a previsão baseada em citação da literatura⁸.

Acetilação de 3: O alcalóide 3 (100 mg) foi dissolvido em piridina (2,0 mL) e adicionu-se anidrido acético (2,0 mL) e, posteriormente, 2 mg de pirrolidinopiridina (PP). A solução foi submetida a refluxo durante 3 h. Após este período e o resfriamento da solução, adicionou-se água gelada (4,0 mL) e extraiu-se com clorofórmio (3 x 10,0 mL). A solução orgânica foi lavada com HCl (10 %) e depois com água. Após secagem com sulfato de sódio anidro, o solvente foi evaporado e o resí-

Tabela 3	. Dados	de RMN	¹ H (4	400 1	MHz)	$e^{13}C$	(100)	MHz)	do	produto	acetilado 5	5*
----------	---------	--------	-------------------	-------	------	-----------	-------	------	----	---------	-------------	----

	Н	MQC	HMBC	¹ Hx ¹ H-COSY	
С	δ _c	$\delta_{\rm H}$ [mult., J(Hz)]	${}^{2}J_{CH} e {}^{3}J_{CH}$		
2	137,3	-			
3	143,7	-	H*;H-5		
5	141,9	8,40 (d; 5,2)		H-6	
6	113,8	7,80 (d; 5,2)	H-5	H-5	
7	132,8	-	H-5		
8	123,2	-	H-10		
9	120,6	8,20 (d; 8,0)	H-11	H-10	
10	123,8	7,40 (t; 8,0)	H-12	H-9; H-11	
11	130,1	7,60 (t; 8,0)	H-9	H-10; H-12	
12	118,3	8,60 (d; 8,0)	H-10	H-11	
13	140,6	-	H-11;H-9		
14	31,1	2,20 (s)			
15	32,7	3,50 (m)	H-17	H-20	
16	112,6	-	H-17		
17	150,9	7,80 (d; 2,8)	H-21	H-15	
18	132,2		H-17	H-19; H-20	
19	121,2	5,40 (dm; 16,8)		H-18 H-18	
		5,30 (dm; 13,2)			
20	45,3	2,80 (m)	2H-19	H-15; H-18; H-21	
21	96,0	5,30 (d; 6,4)	H-17	H-20	
22	166,3		H-17		
1'	95,6	4,90 (d; 8,0)	H-2'	H-2'	
2'	70,4	4,80 (t; 8,0)	H-3'	H-1'; H-3'	
3'	72,0	5,10 (t; 9,6)	H-2'	H-2'; H-4'	
4'	67,8	5,00 (t; 9,6)	H-3'	H-3'; H-5'	
5'	72,1	3,70 (dm; 10,0)	H-4';	H-6'; H-4'	
6'	61,5	4,10 (dm; 12,0), H-6'b		H-5'; H-6'a	
		4,30 (dd; 12,0; 6,0), H-6'a		H-5'; H-6'b	
H ₃ C <u>C</u> O	170,4;169,8; 169,2;168,7	-	H ₃ C-CO; H-3';H-4'		
H ₃ <u>C</u> CO	20,7; 20,5; 20,4; 19,9	2,10; 2,05; 2,00; 1,80	-		

*Os sinais de átomos de carbono C, CH e CH₃ foram reconhecidos pela análise comparativa dos espectros de RMN ¹³C-HBBD e RMN ¹³C-DEPT. Os deslocamentos químicos e constantes de acoplamento (J em Hz entre parenteses) dos sinais de hidrogênio foram deduzidos do espectro 1D de RMN ¹H.

duo foi filtrado em coluna de sílicagel, eluída com $CHCl_3 + MeOH$ (9:1). A fração 5 (71,6 mg) foi fracionada em camada delgada preparativa de sílica gel (eluente acetato de etila). As frações 3 (10,3 mg) e 4 (19,5 mg) deste fracionamento revelaram-se puras através de análise por TLC em diferentes eluentes. Estes produtos apresentaram-se pastosos e foram caracterizados como sendo os derivados acetilados **4a** e **5**.

AGRADECIMENTOS

Os autores agradecem ao CNPq, FAPERJ e CAPES pelas bolsas e apoio financeiro concedidos, aos Prof. P.G. Filho e S. J. da Silva Neto, Departamento de Botânica, Instituto de Biologia, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brasil, pela coleta e identificação botânica do espécimen usado para investigação.

REFERÊNCIAS

 Lewis, W.H.; Elvin-Lewis, M. P. F. Em Plants and Dental Care Among the Jivaro of the Upper Amazon Basin. Advances in Economic Botany Ethnobotany in the Neotropics; France, G. T.; Kallunkie, J. A., eds.; Botanical Garden Bronx: NY, 1984, 1, 53.

- 2. Castro, O.; Lopes, V. J.; Ing. Cienc. Quim. 1986, 10, 56.
- Hasbun, C. P.; Calseron, M.; Castro, O; Gacs-Baitz, E.; Delle Monache, G.; Delle Monache, F.; *Tetrahedron Lett.* **1989**, *30*, 6199.
- 4. Kelly, T.; Xu, W.; Sundaresan, J.; Tetrahedron Lett. 1993, 34, 6173.
- Castaneda, P.; Albor, C.; Matar, R.; Bye, R.; Linares, E.; *Fitoterapia* 1991, 62, 366.
- Arnason, T.; Morand, P.; Salvador, J.; Reyes, I.; Lanbert, J.; Towers, G.H.N.; Phytochemistry 1983, 22, 594.
- Buckingham, J., ed.; Dictionary of Natural Products, Chapman & Hall: London, 1994, p. 1515.
- Aimi, N.; Tsuyuki, T.; Murakami, H.; Sakai, S.; Haginiwa, J.; *Tetrahedron* Lett. 1985, 26, 5299.
- Goulart, M. O. F.; Sant'Ana, A. E. G.; Lima, R. A. de; Cavalcante, S. H.; Carvalho, M. G. de; Braz-Filho, R.; *Quim. Nova* **1993**, *16*, 95.
- Wright, J. L. C.; McInnes, A. G.; Shimizu, S.; Smith, D. G.; Walter, J. A.; Idler, D.; Khalil, W.; Can. J. Chem. 1979, 56, 1898.
- Thimmerman, B. N.; Hoffman, J. J.; Jola, S. D.; Sehram, R. H.; Klencn, R.E.; Bates, R. B; *J. Nat. Prod.* **1983**, *46*, 356.
- 12. Migliuolo, A.; Piccialli, V.; Sica, D.; J. Nat. Prod. 1990, 53, 1262.
- 13. Joshi, K. C.; Indian J. Chem. 1995, 12, 903.
- 14. Levesque, J.; Jacquesy, R.; Foucher, J. P.; Tetrahedron 1982, 38, 1417.
- Boonyaratavej, S.; Tantayanontha, S.; Kitchanachai, P.; J. Nat. Prod. 1992, 55, 1761.
- 16. Valverde, J.; Tamayo, G.; Hesse, J.; Phytochemistry 1999, 52, 1485.
- Siqueira, J. M. de; Bomm, M. D.; Pereira, N. F. G.; Garcez, W. S.; Boaventura, M. A. D.; *Quim. Nova* 1998, 21, 557.