ESTUDO MICROESTRUTURAL DO CATALISADOR Ni/γ-Al₂O₃ – EFEITO DA ADIÇÃO DE CeO₂ NA REFORMA DO METANO COM DIÓXIDO DE CARBONO

Antoninho Valentini e Luiz Fernando Dias Probst

Departamento de Química, Universidade Federal de Santa Catarina, CP 476, 88040-900 Florianópolis - SC Neftalí L. V. Carreño, Edson R. Leite*, Fenelon M. Pontes e Elson Longo Departamento de Química, Universidade Federal de São Carlos, CP 676, 13560-905 São Carlos - SP Wido H. Schreiner e Paulo N. Lisboa-Filho Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba - PR

Recebido em 22/7/02; aceito em 22/4/03

MICROSTRUCTURAL STUDY OF Ni/ γ -Al₂O₃ CATALYST – ADDITION EFFECTS OF CeO₂ ON CARBON DIOXIDE REFORMING OF METHANE. The carbon dioxide reforming of methane was carried out over nickel catalysts supported on the γ -Al₂O₃/CeO₂ system prepared by wet impregnation. With the increase of the CeO₂ weight in the catalyst, a higher stability was observed in the catalytic activity, together with an excellent resistance to carbon deposition and a better Ni dispersion. The catalysts were characterized by means of surface area measurements, TPR, H₂ chemisorption, XRD, SEM, EDX, XPS and TEM. An interaction between Ni and CeO₂ was observed to the Ni/CeO₂ sample after activation in a H₂ atmosphere above 300 °C. Such behavior has a significantly influence on the catalytic activity.

Keywords: methane; syngas; Ni/γ-Al₂O₃.

INTRODUÇÃO

No processo Fischer-Tropsch (PFT) para a produção de hidrocarbonetos, apenas a obtenção do gás de síntese purificado pode atingir valores entre 60 a 70% do total dos custos do processo¹. Portanto, diminuir os custos de produção do gás de síntese é um importante item a ser considerado na implantação do PFT. A proporção molar entre H_2 e CO requerida é dependente da síntese em questão, do catalisador utilizado e da temperatura do processo^{1,2}, sendo que a mesma varia entre 1 e 2.

A reforma a vapor do metano (Equações 1 e 2), usada extensivamente na indústria, produz uma mistura rica em H_{2}^{23} .

$$CH_4 + H_2O \leftrightarrow CO + 3H_2, \qquad (\Delta H^0_{298} = + 206 \text{ kJ/mol}) \tag{1}$$

$$CO + H_2O \leftrightarrow CO_2 + H_2, \qquad (\Delta H^0_{208} = -41 \text{ kJ/mol})$$
 (2)

Para a obtenção de gás de síntese com uma razão molar menor entre H_2/CO , a reforma do metano com dióxido de carbono (Equação 3) é um processo que merece destaque:

$$CH_4 + CO_2 \leftrightarrow 2CO + 2H_2, \qquad (\Delta H^0_{298} = + 247 \text{ kJ/mol})$$
(3)

Além da obtenção de produtos com maior valor agregado, este processo é interessante, também, por consumir gases que provocam o efeito estufa^{4–7}.

Sabe-se que a viabilidade econômica do PFT é dependente do preço do óleo cru (petróleo), atualmente a fonte de energia com melhor relação custo e benefício. Porém a possibilidade de otimizar as condições experimentais para aumentar a vida útil do catalisador nos processos catalíticos, especialmente na reforma do gás natural, é um dos fatores importantes para viabilizar e implementar a utilização do PFT¹. Durante a II Guerra Mundial a Alemanha e, mais recentemente, a África do Sul, desenvolveram tecnologia para diminuir o custo de uma planta baseada no processo Fischer-Tropsch¹ e mostraram que pode ser vantajoso obter combustível a partir do gás de síntese.

Muitos trabalhos foram realizados sobre a reação de reforma catalítica do metano com CO₂ empregando-se diferentes catalisadores, com ênfase para o Ni suportado em SiO₂, α -Al₂O₂ ou MgO⁷⁻¹⁴. O problema mais importante encontrado neste processo é a desativação catalítica devida à deposição de coque7. O desenvolvimento de catalisadores que apresentem elevada resistência ao depósito de coque é, então, fator importante para aumentar a vida útil do catalisador, contribuindo, na atualidade, para um grande número de pesquisas na área. As estruturas carbonadas formadas por reações na fase gasosa, que incluem alcatrões e fuligens, podem, depois de passarem por uma etapa de difusão, sofrer precipitação sobre a superfície dos catalisadores metálicos (geralmente Ni, Fe e Co suportados). Desta forma, podem ocasionar a formação de filamentos (tubos de carbono) que, embora não obstruam de imediato a superfície metálica, provocam a fratura dos grãos do catalisador, com a posterior possibilidade de encapsulamento. Este motivo ocasiona o aumento da perda de carga nos reatores, em seguida à sua desativação¹⁵⁻¹⁸.

O planejamento do sistema catalítico resulta em definir estratégias que, em condições normais de operação, possibilitem a supressão ou decréscimo da quantidade de coque depositado. A menor deposição de coque dependerá do balanço entre as reações que produzem carbono e seus precursores, e das reações que conduzem ao desaparecimento dessas espécies. Prevenir a deposição de coque equivale a favorecer as reações que inibem a formação de carbono; assim sendo, uma das soluções amplamente usada para evitar a formação de coque na fase gasosa, é o uso de agentes gasificantes (por exemplo, MgO e K_2O), em conjunto com condições operacionais que desfavoreçam o aparecimento de radicais livres ou ainda por diminuição dos tempos de residência¹⁵.

Diferentes processos têm sido usados para minimizar o depósito de materiais carbonosos. Recentemente, Ito e colaboradores¹⁸ mos-

^{*}e-mail: derl@power.ufscar.br

traram métodos alternativos para suprimir o encapsulamento do sítio metálico e a formação dos nanotubos de carbono. Por intermédio de reativações consecutivas do catalisador (Ni suportado em alumina) com atmosfera rica em CO_2 , foi possível eliminar o carbono remanescente do processo catalítico, por oxidação do mesmo, com formação de CO.

Leite *et al.*¹⁹ desenvolveram um método de síntese que permite a obtenção de nanopartículas metálicas de Ni, Ag, Co e Fe imersas em sílica amorfa mesoporosa. Este método mostrou-se útil na obtenção de catalisadores pouco propensos à formação de coque, na reação de reforma do metano com dióxido de carbono²⁰. As nanopartículas apresentaram uma elevada estabilidade catalítica, quando comparadas ao seu análogo preparado pelo método de impregnação úmida. Os catalisadores preparados pelo método clássico (impregnação úmida) propiciam a condensação de carbono sobre o cristal de Ni exposto na superfície do catalisador.

Na literatura poucas são as publicações envolvendo CeO_2 no processo de reforma do metano, devido à baixa conversão observada ao empregar este suporte. Entretanto, quando usado em conjunto com outros materiais, conduz ao melhoramento das propriedades catalíticas, tais como a estabilidade e a redução do depósito de coque, promovidas pelo caráter oxidante do CeO_2^{21} .

No presente trabalho foram preparados catalisadores de Ni suportado no sistema γ -Al₂O₃-CeO₂. Os catalisadores foram submetidos ao teste de reforma catalítica do metano com dióxido de carbono. As modificações microestruturais promovidas pela adição de CeO₂, utilizado para melhorar a estabilidade catalítica do material, foram analisadas antes e após o processo catalítico.

PARTE EXPERIMENTAL

Preparação dos catalisadores

Foram preparadas diferentes amostras compostas de γ -Al₂O₃ (AL-3996R, 200 m²/g, Engelhard Exceptional Technologies) contendo (0, 5, 10, 15 e 20%) em massa de óxido de cério, por intermédio de impregnação úmida de Ce(NO₃)₃ (Aldrich, 99,99%) sobre a γ -Al₂O₃, seguida de secagem e calcinação (450 °C). Após a preparação das mesmas, foi realizada a deposição do metal (Ni) nas diferentes misturas, γ -Al₂O₃-CeO₂ (doravante denominadas Ni/AlCe-X, com X sendo igual à porcentagem nominal de CeO₂ no sistema) e em γ -Al₂O₃ e CeO₂ (Riedel-de Haen, 99%), por intermédio do método de impregnação úmida com nitrato de níquel (Fluka, 98%, teor de sulfato \leq 0,005%), seguida de secagem em estufa durante 24 h a 100 °C, e calcinação em 650 °C por 3 h.

Caracterização

O teor metálico (Ni) foi determinado por espectrometria de absorção atômica (HITACHI Z8230). As amostras foram caracterizadas por adsorção química de H₂, redução termoprogramada (TPR) e medida de área superficial específica (BET), no aparelho TPD/TPR 2900 Analyser da Micromeritics. As análises elementares foram realizadas no equipamento CHNS-O FISONS EA 1108.

Para a caracterização por difração de raios-X, foi utilizado um difratômetro Siemens D5000, usando a radiação K α do Cu e monocromador de grafite.

Para a caracterização microestrutural, foram usados os microscópios eletrônicos de varredura (Zeiss, DSM940A) e de transmissão (CM200 Philips Holland, 200 kV).

As medidas de espectroscopia Raman foram obtidas no RFS/ 100 Bruker FT-Raman com um laser $Nd:YVO_4$, com comprimento de onda de 1064 nm, potência de 120 mW, resolução espectral de 2 cm⁻¹, sendo as medidas obtidas à temperatura ambiente.

A avaliação dos catalisadores foi realizada em teste microcatalítico sob pressão atmosférica em fase gasosa e 625 °C. A mistura reacional foi composta de N₂:CH₄:CO₂, na proporção volumétrica de 5:1:1, com fluxo total de 35 cm³/min. A massa de catalisador utilizada foi de 50 mg, com ativação em 650 °C durante 1 h sob fluxo de H₂. Os produtos da reação foram analisados por intermédio de cromatografia gasosa (Shimadzu GC-8A, coluna Porapak Q e PM-5A, deteor TCD).

RESULTADOS E DISCUSSÃO

Caracterização dos catalisadores

Na Tabela 1 estão apresentados os resultados obtidos a partir da adsorção química de H₂, área superficial específica, e teor de níquel para as diferentes amostras preparadas. As variações promovidas na área superficial específica como conseqüência da adição do dopante CeO₂ indicam que CeO₂ pode estar obstruindo parcialmente os poros da γ -Al₂O₃, pois observa-se um decréscimo gradual da área com o acréscimo do teor de CeO₂.

Tabela 1. Notação e caracterização das amostras por absorção atômica, área superficial e adsorção química de H,

Amostra #	Sg (m²/g)	Ni (% em massa)	H ₂ (µmol/g)	D (%)
Ni/Al ₂ O ₃	180	8,6	4,6	0,64
Ni/AlCe-5	170	7,1	3,4	0,66
Ni/AlCe-10	142	8,5	4,0	0,86
Ni/AlCe -15	140	9,2	6,2	1,10
Ni/AlCe -20	136	8,4	8,6	0,92
Ni/CeO ₂	4	7,4	0,5	0,07

= número indica o percentual (nominal) em massa de CeO₂; AlCe = suporte composto pela mistura Al_2O_3 e CeO₂; Sg = área superficial específica; D = dispersão metálica.

Sabe-se que a adição de CeO₂, em baixos teores, promove a estabilidade térmica dos catalisadores Ni/Al₂O₃, quando submetidos a tratamento térmico elevado. Ozawa e Kimura²² reportaram que óxido de cério pode estabilizar Al₂O₃ contra a perda de área superficial, por prevenção da transformação física de γ -Al₂O₃ para α -Al₂O₃, sendo que tal contribuição é dependente da concentração de CeO₂. Em baixas concentrações (~1,0% em massa de CeO₂) a estabilidade térmica é mais efetiva, enquanto que o aumento da concentração de CeO₂ no sistema γ -Al₂O₃-CeO₂ deixa de contribuir para a melhora da estabilidade.

A dispersão metálica também é influenciada com a adição de CeO_2 sendo obtidos valores de dispersão metálica (Ni) superiores àquela apresentada pela amostra Ni/Al₂O₃, conforme a Tabela 1. Resultados semelhantes foram observados por Lu e Wang²¹, que constataram a diminuição do tamanho da partícula metálica promovida pela adição de CeO₃.

Os perfis de redução em temperatura programada (TPR) estão ilustrados na Figura 1. Para a amostra Ni/CeO₂, observa-se redução do metal por intermédio do consumo de hidrogênio, iniciando em 300 °C e cessando em 450 °C. Em contraste, para a amostra Ni/ Al₂O₃, a redução inicia-se em 400 °C, finalizando próximo de 900 °C, apresentando dois valores de temperatura de consumo máximo de H₂ (T_M). Sendo o primeiro pico (T_M próximo de 600 °C) devido, provavelmente, ao níquel mais exposto ou acessível e o segundo pico,

Figura 1. Perfis de redução à temperatura programada (TPR) para os diferentes catalisadores, e para CeO, na ausência de metal

em temperatura mais elevada ($T_{\rm M}$ próximo a 770 °C), devido ao níquel presente no interior dos poros do material, possuindo, além da menor acessibilidade ao H₂, maior interação com o suporte^{23,24}.

A presença de um pico de consumo de H₂ próximo de 900 °C para todas as amostras, com exceção de Ni/Al₂O₂, deve-se à redução parcial do CeO₂^{25,26} e à formação de CeAlO₃^{27, 28}, ambos identificados por difração de raios-X (principais picos para CeAlO₂, $2\theta = 23.6$, 33,5, 41,4, 48,2, 60, 70,6). Tal observação é confirmada pelo aumento do pico com o percentual de dopante, sendo pouco perceptível para a amostra com menor teor de Ce (Ni/AlCe-5). Os perfis de CeO₂ e Ni/CeO₂ apresentam consumo de H₂ acima de 750 °C, numa grande faixa de temperatura, tratando-se de redução parcial de CeO₂^{25,26}. Sabe-se que a presença de Ni promove a redução do óxido cério em temperaturas inferiores²⁹. Como podem ser observados nos perfis de TPR, há um consumo de H₂ na faixa de temperatura entre 270 e 400 °C, tal consumo de H, pode estar relacionado ao Ni presente em regiões mais ricas em CeO2. Comparando as temperaturas de redução do Ni nas amostras Ni/CeO2 e Ni/Al2O3, a primeira apresenta um pico de redução em torno de 390 °C, enquanto a segunda apresenta um pico máximo em torno de 600 °C e outro em torno de 770 °C. Observa-se na série de catalisadores o deslocamento dos picos (T_M próximo de 600 °C) para temperaturas inferiores com o acréscimo do teor de CeO2, porém não gradual.

O estudo morfológico das amostras de Ni/Al₂O₃, Ni/CeO₂ e Ni/ AlCe-20 foi acompanhado por microscopia eletrônica de varredura de elétrons secundários (MEV). Os resultados de MEV mostraram que as amostras de Ni suportado no sistema Al₂O₃ - CeO₂ não possuem uma superfície homogênea, apresentando uma separação clara entre as diferentes fases presentes, regiões ricas em Al₂O₃ e regiões ricas em CeO₃, conforme ilustrado na Figura 2.

Os difratogramas de raios-X, obtidos após previa ativação em 650 °C, ilustrados na Figura 3, mostram a fase cristalina do sistema Ni/AlCe com o aumento da concentração de CeO₂. A Figura 3b ilustra o alargamento dos picos correspondentes aos planos cristalinos 111 e 200 do Ni metálico, devido à adição de CeO₂. Esta observação pode estar relacionada com o aumento da dispersão metálica, devido à adição de CeO₂, o que sugere uma diminuição do tamanho de cristalito do Ni²¹. O tamanho dos cristalitos do componente metálico não pode ser determinado, devido ao fato de que o plano cristalino 111 do níquel, com maior intensidade, encontra-se sobreposto pelo pico do plano cristalino 400 do Al₂O₃, não permitindo uma adequada deconvolução do pico 111 do Ni. Contudo, os significativos alargamentos dos picos da fase cristalina do Ni 111 e, principalmente,

Figura 2. Imagens obtidas por intermédio de MEV dos catalisadores Ni/ Al₂O₂, Ni/CeO₂ e Ni/AlCe-20 ativados em 650 °C durante 1 h

Figura 3. (a) Difratogramas de raios-X dos catalisadores Ni/AlCe antes do teste catalítico; (b) destaque para o alargamento dos picos, correspondente ao Ni metálico, plano 111 e 200, em função da composição de CeO,

do Ni 200 sugerem uma diminuição do tamanho de cristalito de Ni, quando é adicionado o CeO_2 . Esta observação confirma o aumento na dispersão metálica (Tabela 1) determinada por adsorção química de H_2 .

As análises das amostras de Ni/CeO₂ por raios-X, Raman, TEM, EDX e XPS em adição aos testes catalíticos, apresentadas a seguir, sugerem a interação química entre o Ni e o suporte CeO₂ na superfície do catalisador. Atribui-se a esta interação o bloqueio dos sítios metálicos, resultando na inatividade catalítica observada na reação de reforma do metano.

Os difratogramas de raios-X do catalisador Ni/CeO, obtidos após diferentes temperaturas de ativação (250 a 650 °C), em atmosfera de H₂, são apresentados na Figura 4. Para as amostras catalíticas que sofreram o processo de redução em 300, 350 e 650 °C foi detectada a presença de níquel metálico. No entanto, a amostra de Ni/CeO, ativada em 250 °C apresentou uma fase de óxido de níquel. Esta observação poderia sugerir que a temperatura de 250 °C é insuficiente para promover a redução do NiO para Ni, quando suportado em CeO₂. Porém, a obtenção dos difratogramas foi realizada 72 h após as amostras sofrerem o processo de redução, sendo expostas ao ar, possibilitando a oxidação do Ni na superfície do catalisador. Contudo, o teste de atividade catalítica para as amostras Ni/CeO2, por intermédio da reação de hidrogenação do benzeno, mostrou que o catalisador Ni/CeO2, ativado em 250 °C (redução em atmosfera de H₂), apresenta conversão do benzeno comparável ao Ni/Al₂O₂³⁰. Entretanto, uma menor capacidade de conversão foi observada quando o catalisador de Ni/CeO, foi ativado em 300 °C, e seus análogos ativados em 350 e 650 °C não apresentaram atividade catalítica em condições similares³¹, fato este que sugere um bloqueio da superfície do Ni metálico nas amostras de Ni/CeO2 ativados em temperaturas acima de 300 °C.

Figura 4. Difratogramas de raios-X do catalisador Ni/CeO₂ ativado em diferentes temperaturas durante 1 h

Haugsrud *et al.*³² descreveram os efeitos causados na superfície de Ni, Co e Cu quando interagem com CeO_2 , em função do tratamento térmico em condições oxidantes, sugerindo que a cerianita, quando usada para recobrir o Ni, promove uma proteção da fase metálica, diminuindo a oxidação em temperaturas elevadas de calcinação. Este fato explica a resistência das amostras aos fenômenos de oxidação mesmo várias horas após a ativação.

Em adição, o espectro de FT-Raman (análises do ordenamento a curto alcance) das amostras de Ni/CeO₂ ativadas em temperaturas a partir de 250 °C é comparado com o padrão de CeO₂ comercial (Aldrich), Figura 5. O espectro Raman deste material corresponde ao modo com freqüência em ϖ_R = 466 cm⁻¹ atribuído ao estiramento simétrico da unidade de vibração Ce-O8³³. Conseqüentemente, este

modo pode ser muito sensível a qualquer mudança microestrutural ocasionada pelo aumento da temperatura de ativação. A Figura 5 ilustra o desaparecimento do modo com frequência em ϖ_R = 463 cm⁻¹, com aumento da assimetria e diminuição de vida média dos fónons da rede cristalina, em função do aumento da temperatura de ativação, fato este entendido como resultado da modificação microestrutural da superfície dos catalisadores de Ni/CeO₂.

Figura 5. Espectro de Raman dos catalisadores de Ni/CeO₂ ativados em diferentes temperaturas durante 1 h

Estudos de espectroscopia de fotoelétrons (XPS) foram realizados com o objetivo de verificar a existência de níquel no estado metálico na superfície dos grãos, na amostra Ni/CeO₂ ativada a 650 °C e investigar a ocorrência de modificações na superfície da partícula, conforme indicado por FT-Raman. A Figura 6a mostra o espectro Ce3d da amostra Ni/CeO₂ onde é possível observar a existência dos

Figura 6. Espectroscopia de fotoelétrons (XPS) da amostra Ni/CeO₂ ativada em 650 °C durante 1 h; (a) espectro Ce3d; (b) espectro de Ni2p

dois dubletos correspondentes ao óxido de cério. Por outro lado, na Figura 6b, o espectro de Ni2p da mesma amostra apresenta uma banda larga em torno de 850 eV (Ni $2p_{3/2}$), não acompanhada da banda em 870 eV (Ni $2p_{1/2}$). Tais resultados indicam que o níquel na superfície da amostra não se encontra no estado metálico e, possivelmente, apresenta algum tipo de ligação química com o suporte CeO₂.

A Figura 7 ilustra as imagens de campo claro obtidas por microscopia eletrônica de transmissão (MET) da amostra de Ni/CeO2, ativada em 250 °C. Observam-se regiões ricas em Ni e CeO,, respectivamente, determinadas por espectroscopia de dispersão de energia de raios-X (EDX). As análises por MET e EDX da amostra de Ni/ CeO, ativada em 250 °C sugerem a existência de partículas individuais de Ni suportadas em CeO2. Este fato não foi observado na amostra de Ni/CeO, ativada em 650 °C em imagens de campo claro, onde não foram detectadas partículas de Ni individuais suportadas em CeO2. A presença de partículas individuais de Ni, para a amostra Ni/ CeO₂ (Figura 7), corrobora com o perfil de TPR, Figura 1, no qual houve consumo de H_a a partir de 300 °C, temperatura mais baixa em comparação com as demais amostras. Inicialmente, as partículas de NiO encontram-se desprotegidas, revelando uma fraca interação com o suporte, estando, assim, propensas à redução em temperaturas inferiores.

Figura 7. Imagens de campo claro de MET e espectro de EDX da amostra de Ni/CeO, ativada em 250 °C

Reforma do metano com dióxido de carbono

A Figura 8a apresenta os resultados dos testes catalíticos das amostras, obtidos na reação de reforma do metano com dióxido de carbono. Observa-se que para as amostras contendo CeO_2 , a conversão do CH_4 foi superior à apresentada por Ni/Al₂O₃, o que concorda com os maiores valores de dispersão de Ni observados. No intervalo de tempo de 15 h de teste catalítico continuo, é possível observar que a presença de CeO₂ na composição do catalisador proporciona um aumento de atividade e de estabilidade catalítica, sendo esta última mais pronunciada para as amostras que possuem uma taxa maior de

Figura 8. (a) Gráfico de conversão de metano em função do tempo para os diferentes catalisadores, (b) Teste de estabilidade catalítica na conversão de metano para NiAl₂O₃ e Ni/AlCe-20 ativados em 650 °C durante 1 h. Temperatura reacional de 625 °C e massa de 50 mg

 CeO_2 . Para evidenciar o acréscimo da estabilidade, foi realizado um teste catalítico de 50 h para os catalisadores Ni/Al₂O₃ e Ni/AlCe-20, Figura 8b. Ao final de 50 h de teste catalítico para Ni/Al₂O₃, a conversão de CH₄ decresceu de 49 para 27%, porém para a amostra Ni/AlCe-20 a queda de conversão do CH₄ foi muito pequena no mesmo intervalo de tempo reacional, pois passou de 55 para 52%.

No teste de 50 h para Ni/AlCe-20 a queda de conversão catalítica é linear, entretanto para Ni/Al₂O₃ observa-se o mesmo comportamento apenas no início, sendo que nas últimas horas de teste o decréscimo de conversão foi mais acentuado. Tal comportamento pode estar relacionado com a formação de coque e de filamentos de carbono, os quais estariam recobrindo as partículas de Ni. Tal fenômeno seria mais perceptível a partir de 25 h de teste catalítico, indicando um comprometimento do catalisador.

O efeito da adição de CeO₂ no sistema Ni/Al₂O₃ não é apenas no acréscimo da conversão e da estabilidade, estes resultados também são acompanhados pelo aumento da seletividade. Com a adição de CeO₂ observou-se uma menor formação de H₂O, subproduto reacional, porém a variação da razão H₂/CO é pouco perceptível, mantendo-se praticamente constante (entre 0,8 e 0,9), com melhor desempenho para a amostra contendo CeO₂, Figura 9.

A maior estabilidade catalítica observada para as amostras contendo CeO_2 , relaciona-se com a menor deposição de coque em tais amostras (DRX e CHN) quando comparadas a Ni/Al₂O₃, As reações de formação de coque, na reforma do CH₄ com CO₂³ são:

$$CH_4 \leftrightarrow C + 2 H_2,$$
 (5)

$$2 \operatorname{CO} \leftrightarrow \operatorname{C} + \operatorname{CO}_2, \tag{6}$$

$$CO + H_2 \leftrightarrow C + H_2O,$$
 (7)

Figura 9. Variação da razão H₂/CO durante o teste de estabilidade catalítica de NiAl₂O₂ e Ni/AlCe-20

e também a reação de hidrogenação de CO_2 promovida pelo metal em elevada temperatura:

$$CO_2 + H_2 \leftrightarrow CO + H_2O,$$
 (8)

reações paralelas que podem levar a diferentes seletividades observadas nos diferentes testes catalíticos.

Tais reações paralelas (Equações 5 a 8) ocorreriam com maior facilidade no catalisador Ni/Al₂O₃, ocasionando uma maior deposição de coque e um decréscimo na seletividade por intermédio do consumo de H₂. A reação de hidrogenação do CO₂ (Equação 8) é tida como a principal responsável pela obtenção de razões H₂/CO abaixo de 1, pois consome H₂ ao passo que CO é obtido como um dos produtos.

A queda significativa da conversão do CH_4 para o catalisador Ni/ Al₂O₃ após 30 h de teste catalítico não influencia de imediato na razão H₂/CO obtida. No entanto, após 37 h de teste catalítico a razão H₂/CO apresenta queda similar à queda de conversão de CH_4 , sugerindo, além da barreira difusional causada pelo coque depositado, a perda de atividade catalítica.

Para o catalisador Ni/CeO₂ não foi observada conversão do metano em testes realizados nas mesmas condições reacionais. Fato este relacionado com a microestrutura que apresenta esta amostra, comportamento discutido anteriormente.

Deposição de carbono

A análise por difração de raios-X dos catalisadores após 15 h de teste catalítico na reforma do metano, é apresentada na Figura 10. A presença de coque ordenado decorrente do processo catalítico é bem expressivo para a amostra Ni/Al₂O₃. Com o crescente teor de CeO₂ na composição do catalisador, observa-se que o pico relativo ao coque ordenado torna-se menos expressivo no difratograma de raios-X.

A menor deposição de coque para as amostras contendo CeO_2 , confirmada por intermédio de análise elementar (CHN) presente na Tabela 2, sugere que CeO_2 contribui efetivamente neste processo, dificultando a formação dos compostos de elevada massa molecular a base de carbono. O percentual de carbono nas amostras Ni/AlCe após os testes catalíticos não apresentou variações muito significativas em relação à concentração de CeO₂.

A condensação de carbono amorfo sobre o cristal de Ni, exposto na superfície do catalisador impregnado na alumina, permite a formação, inicialmente, de uma camada em torno da partícula de Ni, com subseqüente crescimento do nanotubo de carbono¹⁷. Este processo guia ao encapsulamento da partícula metálica e à separação do

Figura 10. Difratogramas de raios-X dos catalisadores com diferentes porcentagens de CeO₂. Análise após teste catalítico de reforma de CH₄ com CO₂. 625 °C/15 h, \clubsuit = Al₂O₂, \Diamond = CeO₂, * = carbono ordenado

Tabela 2. Percentagem de carbono determinado por análise elementar (CHN) nos catalisadores, logo após a ativação em H_2 e depois do processo de reforma do metano

Catalisador	C (% em massa)	
Ni/Al ₂ O ₃ após ativação	0,02	
Ni/Al ₂ O ₃ após 15 h de uso a 625 °C	30,48	
Ni/AlCe -5 após 15 h de uso a 625 °C	9,52	
Ni/AlCe -10 após 15 h de uso a 625 °C	9,99	
Ni/AlCe -20 após ativação	0,18	
Ni/AlCe -20 após 15 h de uso a 625 °C	9,86	

níquel da superfície do carreador, como ilustra a imagem de MET da amostra Ni/Al₂O₃ após o processo catalítico. A perda da atividade catalítica está estreitamente relacionada com o bloqueio dos sítios ativos por tubos de carbono, ilustrado na Figura 11a. Ao contrário do catalisador Ni/Al₂O₃, os catalisadores contendo CeO₂, em condições similares, não são igualmente propensos à formação de estruturas de carbono. As análises de MET do catalisador de Ni/Al₂O₃ (Figura 11a), após 50 h de teste catalítico, sugerem a formação de nanotubos com comprimento acima de 10 µm. Por outro lado, nanotubos de carbono com comprimento inferiores a 1 µm no catalisador Ni/AlCe-20 (Figura 11b) foram verificados. A partir do crescimento da estrutura de carbono na superfície do sítio metálico (Ni), originaram-se nanotubos de carbono com multiparedes, conforme imagem da Figura 11c.

O mecanismo que guia a manutenção da estabilidade catalítica dos sítios ativos no sistema Ni/AlCe pode estar associada ao caráter oxidante do CeO_2 e à sua apreciável capacidade de estocar oxigênio, fato diversas vezes descrito²⁹. Como conseqüência, o catalisador apresenta uma notável contribuição na reatividade catalítica, por intermédio da oxidação e posterior gaseificação das espécies carbonadas formadas nas reações paralelas ao processo de reforma do metano.

Os compósitos Ni/AlCe, processados pelo método de impregnação, formados por compostos de estruturas cristalinas de propriedades diferentes (suporte de Al_2O_3 e o dopante CeO_2), guiam efetivamente a otimização dos processos catalíticos de reforma do metano. Contudo, significativas mudanças microestruturais são observadas nos sítios ativos, de acordo com a composição do suporte e o tratamento térmico empregado. Este fato pode favorecer ou inibir a atividade e estabilidade catalítica deste sistema e, ainda, contribuir para o controle de deposição de carbono.

20nm Camadas de C

Figura 11. Imagens de campo claro de MET, (a) Ni/Al₂O₃ e (b) Ni/AlCe-20, após o processo catalítico de 50 h; (c) maximização de um nanotubo de carbono com forma coaxial, mostrando as multiparedes formadas em torno da partícula metálica de Ni

CONCLUSÃO

A adição de CeO₂ no sistema Ni/Al₂O₃ proporcionou a obtenção de catalisadores com melhores propriedades, quanto à capacidade de conversão e estabilidade catalítica, na reação de reforma do metano com dióxido de carbono. Fatores esses atribuídos à melhor dispersão metálica do Ni e à prevenção da deposição de coque, promovidos pelo CeO₃.

A não homogeneidade observada no material catalítico, juntamente com os resultados promissores, incentivam a obtenção de catalisadores Ni/AlCe por intermédio de outro método de preparação, método que apresente melhor controle da homogeneidade, pois acredita-se que a melhor distribuição (homogeneidade) do material resultará em melhores conversões e estabilidade catalítica.

AGRADECIMENTOS

Os autores agradecem o suporte financeiro prestado pelas agências de fomento FAPESP/CEPID, CNPq / PRONEX e CAPES.

REFERÊNCIAS

- 1. Dry, M. E.; Catal. Today 2002, 71, 227.
- 2. Rostrup-Nielsen, J. R.; Catal. Today 2000, 63, 159.
- 3. Tang, S. B.; Qiu, F. L.; Lu, S. J.; Catal. Today 1995, 24, 253.
- 4. Kroll, V. C. H.; Swaan, H. M.; Mirodatos, C.; J. Catal. 1996, 161, 409.
- Moitinho, M. S. P.; Nascimento, S. F.; Hori, C. E.; Soares, R. R.; Anais do 1º Congresso de Catálise do Mercosul e 11º Congresso Brasileiro de Catálise, Bento Gonçalves, Brasil, 2001.
- Nichio, N.; Casella, M. L.; Santori, G. F.; Ponzi, E. N.; Ferretti, O. A.; *Catal. Today* **2000**, *62*, 231.
- Tomishige, K.; Himeno, Y.; Matsuo, Y.; Yoshinaga, Y.; Fujimoto, K.; *Ind. Eng. Chem. Res.* 2000, 39, 1891.
- Tomishige, K.; Matsuo, Y.; Sekine, Y.; Fujimoto, K.; Catal. Commun. 2001, 2, 11.
- 9. Wang, H. Y.; Ruckenstein, E.; Appl. Catal., A 2001, 209, 207.
- 10. Takeguchi, T.; Furukawa, S. N.; Inoue, M.; J. Catal. 2001, 202, 14.
- Frusteri, F.; Arena, F.; Calogero, G.; Torre, T.; Parmaliana. A.; Catal. Commun. 2001, 2, 49.
- Xu, B. Q.; Wei, J. M.; Wang, H. Y.; Sun, K. Q.; Zhu, Q. M.; Catal. Today 2001, 68, 217.
- 13. Zhu, T. L.; Flytzani-Stephanopoulos, M.; Appl. Catal., A 2001, 208, 403.
- 14. Crisafulli, C.; Sciré, S.; Minicò, S.; Solarino, L.; Appl. Catal., A 2002, 225, 1.
- Figueiredo, L. L.; Ribeiro, F.; *Catalise Heterogênea*, Fundação Calouste Gulbenkian: Lisboa, 1987.
- 16. Hester, J. R.; Louchev, O. A.; Appl. Phys. Lett. 2002, 80, 2580.
- 17. Tsang, S. C.; Claridge, J. B.; Green, M. L. H.; Catal. Today 1995, 23, 3.
- 18. Ito, M.; Tagawa, T.; Goto, S.; Appl. Catal., A 1999, 177, 15.
- 19. Leite, E. R.; Carreño, N. L. V.; Longo, E.; Pontes, F. M.; Barison, A.;
- Ferreira, A. G.; Maniette, Y.; Varela, J. A.; *Chem. Mater.* 2002, *14*, 3722.
 Leite, E. R.; Carreño, N. L. V.; Longo, E.; Valentini, A.; Probst, L. F. D.;
- J. Nanosci. Nanotechnol. 2002, 2, 89.
- 21. Wang, S. B.; Lu, G. Q.; Appl. Catal., B 1998, 19, 267.
- 22. Ozawa, O.; Kimura, M.; J. Mater. Sci. Lett. 1990, 9, 291.
- 23. Molina, R.; Poncelet, G.; J. Catal. 1998, 173, 257.
- Chen, S. L.; Zhang, H. L.; Hu, J.; Contescu, C.; Schwarz, J. A.; *Appl. Catal.* 1991, 73, 289.
- Barrault, J.; Alouche, A.; Paul-Bancour, V.; Hilaire, L.; Percheron-Guegan, A.; Appl. Catal. 1989, 46, 269.
- Zotin, F. M. Z.; Tournayan, L.; Varloud, J.; Perrichon V.; Frety, R.; *Appl. Catal.*, A **1993**, *98*, 99.
- 27. Piras, A.; Trovarelli, A.; Dolcetti, G.; Appl. Catal., B 2000, 28, L77.
- Damyanova, S.; Perez, C. A.; Schmal, M.; Bueno, J. M. C.; *Appl. Catal.*, A 2002, 234, 271.
- 29. Trovarelli, A.; Catal. Rev. 1996, 38, 439.
- 30. Valentini, A.; Probst, L. F. D.; Anais Assoc. Bras. Quím. 2001, 50, 156.
- 31. Valentini, A.; Probst, L. F. D.; trabalho não publicado.
- 32. Haugsrud, R.; Corros. Sci. 2002, 44, 1569.
- Kosacki, I.; Suzuki, T.; Anderson, H. U.; Colomban, P.; Solid State Ionics 2002, 149, 99.