VOLATILE CONSTITUENTS OF THE OILS FROM *Povedadaphne quadriporata* (LAURACEAE) FROM "ALBERTO M. BRENES" BIOLOGICAL PRESERVE, COSTA RICA

José F. Cicció* and Carlos Chaverri

Centro de Investigaciones en Productos Naturales and Escuela de Química, Universidad de Costa Rica, 2060 San José, Costa Rica

Recebido em 6/6/07; aceito em 27/9/07; publicado na web em 10/3/08

The composition of the leaf, bark and wood oils of *Povedadaphne quadriporata* W. Burger from Costa Rica were analyzed by capillary GC/FID and GC/MS. One hundred and sixty-three compounds were identified. The major components from the leaf oil were α -pinene (21.2%), germacrene D (18.1%), β -pinene (14.8%), α -phellandrene (7.8%), α -copaene (6.6%), β -caryophyllene (6.1%) and δ -cadinene (3.5%). From bark oil, the main constituents were α -pinene (27.7%), *p*-cymene (7.8%), β -pinene (7.4%), camphene (3.6%), α -copaene (3.5%) and limonene (3.3%). From wood oil, 1,10-di-*epi*-cubenol (8.0%), α -eudesmol (3.4%), cadalene (3.4%) and δ -cadinene (3.0%) were the major compounds identified. This paper describes for the first time the composition of essential oils in this unique species and genus.

Keywords: Povedadaphne quadriporata; Lauraceae; essential oils.

INTRODUCTION

The Lauraceae is a family constituted of about 50 genera and includes 2000 to 3000 species of mostly trees from the tropics.¹⁴ This family is well distributed and ecologically important in the Costa Rican cloud forests. Many individuals appear in abundance and diversity.⁵ Taxonomically, this family is recognized by the simple, alternate, stiff and aromatic elliptic to obovate leaves, and by the fruits often borne in a cup. In Costa Rica, there are found about 130 species representing 18 genera, were the most diverse is Ocotea Aubl.⁶ About 37% of the species and two genera (Gamanthera and Povedadaphne) are endemic to Costa Rican forest. Worldwide, the family has a considerable economic value because it is used as a source of timber for construction and furniture. Also, some species are utilized for food (Persea americana Mill., Avocado), spices (Laurus nobilis L., Bay Laurel and Cinnamomum verum J. Presl, Cinnamon), aromatics [Sassafras albidum (Nutt.) Ness, Sassafras, Aniba rosaeodora Ducke, Rosewood] and medicines [Cinnamomum camphora (L.) J. Presl, Camphor Laurel].

Povedadaphne is a single species genus only known in Costa Rica. The plant *Povedadaphne quadriporata* W. Burger^{3,7} is a tree about 20 m tall. It can be found distributed in Costa Rica between 200 and 1000 m about sea level in the very wet premontane rain forest of the North Caribbean. The plant presents small stiff, slightly lustrous olive green (when dry), obovate-elliptic leaves, with conspicuous small pit domatia with white hairs in the vein axils of the lower surface. The leaf base is narrow and decurrent. The flowers are small with nine hairy stamens dehiscing by four apical pores. The fruit is globose or pyriform. The wood is pinkish and used in construction. When the leaves are crushed they give off a scent due to an oil of unknown composition which has not been previously reported. The aim of this work was to examine the chemical composition of the oils obtained from fresh leaves, bark and wood of P. quadriporata. This tree is rare and endemic to Costa Rica. Popularly known as "ira rosa" it is classified as "Vulnerable" according IUCN Status8 with a high risk of extinction in the wild in the mediumterm future because the population is restricted to small locations.

EXPERIMENTAL

Plant material

Leaves, bark and wood of *Povedadaphne quadriporata* W. Burger were collected in May, in the tropical premontane rain forest of the "Alberto M. Brenes" Biological Preserve, located in the valley of the Río San Lorencito, San Ramón, Province of Alajuela, in north-central Costa Rica, at an elevation of 800 m. A voucher specimen was deposited at the Herbarium of the University of Costa Rica (USJ 44865).

Oil isolation

Fresh leaves (1 kg) were subjected to hydrodistillation for 2 h using a modified Clevenger-type apparatus. The distilled oil was collected and dried over anhydrous sodium sulfate, filtered and stored in a freezer (0-10 °C). The colorless oil yield was 0.2% (v/w). The yields from bark and wood were 0.1% (v/w).

General analytical procedures

GC/FID analysis

The oils of *P. quadriporata* were analyzed by GC/FID using a Shimadzu GC-17 gas chromatograph. The data were obtained on a 5% phenyl- 95% methylpolysiloxane fused silica capillary column (30 m x 0.25 mm; film thickness 0.20 μ m), Heliflex (Alltech) AT-5, with a Shimadzu Class-VP, version 4.3 software. Operating conditions were: carrier gas N₂, flow 1.0 mL/min; oven temperature program: 60-220 °C at 3 °C/min, 220 °C (10 min); sample injection port temperature 250 °C; detector temperature 275 °C; split 1:50.

GC/MS analysis

The analysis by GC/MS was performed using a Shimadzu GC-17A gas chromatograph coupled with GCMS-QP5050 apparatus and CLASS 5000 software with Wiley139 computer database. The data were obtained on a 5% phenyl- 95% methylpolysiloxane fused silica capillary column (30 m x 0.25 mm; film thickness 0.25 μ m).

Identification

Identification of the components of the oils was performed using the retention indices on a DB-5 type column, and by comparison of their mass spectra with those published in the literature⁹⁻¹¹ or those of our own database. Integration of the total chromatogram, expressed as area percent, has been used to obtain quantitative compositional data.

RESULTS AND DISCUSSION

over 38-400 amu range; split 1:70.

The oils obtained from leaves, bark and wood of *P. quadriporata* were predominantly terpenoid in nature. The chemical analysis of the leaf oil showed that the major classes of constituents were monoterpene and sesquiterpene hydrocarbons (48.9% and 45.2% respectively). Among the 86 compounds identified (Table 1), comprising about 99% of the total oil, the major constituents of the oil were α -pinene (21.2%), germacrene D (18.1%), β -pinene

(14.8%), α -phellandrene (7.8%), α -copaene (6.6%), β -caryo-phyllene (6.1%) and δ -cadinene (3.5%). The oxygenated compounds amount only to about 5%.

From bark oil, the monoterpene and sesquiterpene hydrocarbons were 52.4% and 17.0% respectively. The oxygenated compounds were more abundant (24.6%) than encountered in the leaf oil. The 116 compounds identified represent about 97% of the oil. The major components of the oil were α -pinene (27.7%), *p*-cymene (7.8%), β -pinene (7.4%), camphene (3.6%), α -copaene (3.5%) and limonene (3.3%), as well as a significant number of cadinane, guaiane and eudesmane-type sesquiterpenoids.

The wood oil is composed mainly of sesquiterpenoids. Of the 87 compounds identified, 1,10-di-*epi*-cubenol (8.0%) was the major constituent together with α -eudesmol (3.4%), cadalene (3.0%), δ -cadinene (3.0%) and γ -eudesmol (2.7%). Some constituents from this oil needed further identification.

ACKNOWLEDGEMENTS

The authors are grateful to Vicerrectoría de Investigación (UCR) (Project 809-93-600) for financial support, to A. H. Salazar, director of the "Alberto M. Brenes" Biological Preserve, and V. Mora for their enthusiastic assistance and for the botanical identification, to L. Hernandez (CIPRONA) for her technical assistance.

Table 1. Composition of the oils isolated from leaf, bark and wood of Povedadaphne quadriporata Burger

Compound ^a	RI ^b	Leaves (%)	Bark (%)	Wood (%)	Identification method ^d
hexanal	808		t		1, 2
2-(E)-hexenal	854	t			1, 2
2-heptanone	894		t		1, 2
tricyclene	926	t	0.1	t	1, 2
α-thujene	931	0.1	t		1, 2
α-pinene	937	21.2	27.7	1.2	1, 2, 3
α-fenchene	948	t	t	t	1, 2
camphene	952	0.7	3.6	0.8	1, 2
benzaldehyde	963			0.1	1, 2
verbenene	967		0.1		1, 2
sabinene	976	t			1, 2
β-pinene	979	14.8	7.4	0.2	1, 2, 3
6-methyl-5-hepten-2-one	990		0.1		1, 2
myrcene	992	1.1	0.2	0.2	1, 2, 3
α-phellandrene	1007	7.8	1.2	0.2	1, 2, 3
δ-3-carene	1012	0.2	0.1		1, 2
α-terpinene	1019	0.1	0.1	0.2	1, 2, 3
<i>p</i> -cymene	1025	1.1	7.8	0.2	1, 2
limonene	1031	1.1	3.3	0.2	1, 2, 3
1,8-cineole	1033	0.3	0.4	0.2	1, 2, 3
(Z)-β-ocimene	1039	0.1			1, 2
(E) - β -ocimene	1049	0.1			1, 2
γ-terpinene	1059	0.2	0.2		1, 2
cis-sabinene hydrate	1069	t			1, 2
trans-linalool oxide	1076			0.2	1, 2
p-mentha-2,4(8)-diene	1086	t	t		1, 2
terpinolene	1088	0.4	0.6		1, 2
fenchone	1090			0.2	1, 2
linalool	1098	t	0.1	0.4	1, 2, 3
α-pinene oxide	1099		t		1, 2
endo-fenchol	1114	t	1.6	0.2	1, 2
trans-pinene hydrate	1122	t		0.1	1, 2
exo-fenchol	1124		0.1		1, 2
α-campholenal	1126		1.0	0.2	1, 2

Table 1. continuation

Compound ^a	RI ^b	Leaves (%)	Bark (%)	Wood (%)	Identification method ^d
nopinone	1138	t	0.9	0.1	1, 2
trans-pinocarveol	1142	t	t		1, 2
camphor	1145		t	0.1	1, 2
trans-verbenol	1147	t			1, 2
camphene hydrate	1148	t	0.4	0.2	1, 2
isoborneol	1158		t		1, 2
trans-pinocamphone	1163		t		1, 2
pinocarvone	1164	t	t		1, 2
borneol	1165	0.1	1.5	0.4	1, 2
cis-pinocamphone	1173		t		1, 2
terpinen-4-ol	1177	0.2	0.3	0.1	1, 2, 3
<i>p</i> -cymen-8-ol	1179			t	1, 2
α-terpineol	1191	0.1	2.0	0.3	1, 2, 3
mirtenol	1196	t	0.2	0.1	1, 2
myrtenal	1197	t	•		1, 2
<i>cis</i> -piperitol	1198	t			1, 2
trans-dihydrocarvone	1203	· ·	0.1		1, 2
verbenone	1205		t		1, 2
trans-carveol	1200		0.4		1, 2
sabinene hydrate	1220		0.4	ť	1, 2
	1220		0.2	t	
cumin aldehyde	1239		0.2	0.6 0.1	1, 2
carvone			t		1, 2
carvotanacetone	1248	t	0.4	0.1	1, 2
piperitone	1251			t	1, 2
carvenone	1256		t		1, 2
trans-myrtanol	1259			t	1, 2
perilla aldehyde	1272			0.1	1, 2
p-ment-1-en-7-al	1277		t		1, 2
bornyl acetate	1285		t		1, 2
<i>p</i> -cymen-7-ol	1287		t		1, 2
thymol	1289			t	1, 2
carvacrol	1298		t	t	1, 2
undecanal	1306		t	t	1, 2
δ-elemene	1338	t	t		1, 2
α-cubebene	1350	0.3	t	0.2	1, 2
cyclosativene	1369		0.1	0.1	1, 2
α-ylangene	1371	0.1	0.2	0.6	1, 2
α-copaene	1374	6.6	3.5	0.1	1, 2
β-bourbonene	1384	t	t		1, 2
β-cubebene	1390	0.9	t		1, 2
β-elemene	1393	t		0.1	1, 2
sativene	1396		t		1, 2
cyperene	1398	t	t		1, 2
dodecanal	1408		0.3	0.3	1, 2
α-gurjunene	1411	t	t	0.1	1, 2
α- <i>cis</i> -bergamotene	1416		t		1, 2
β-caryophyllene	1418	6.1	0.4	1.3	1, 2, 3
α-santalene	1421		0.4	0.4	1, 2
β-ylangene	1422	0.1			1, 2
β-copaene	1428	0.6	t		1, 2
β-gurjunene	1429	~ - ~	t		1, 2
γ-elemene	1433	t	-		1, 2
α - <i>trans</i> -bergamotene	1436		0.5	t	1, 2
α-guaiene	1440	0.3	t	ĩ	1, 2
aromadendrene	1440	0.5	i	0.1	1, 2
<i>trans</i> -muurola-3,5-diene	1440	t	t	0.1	1, 2
α-humulene	1453	1.9	0.1	0.1	1, 2, 3
geranylacetone		1.7		0.1	1, 2, 3
alloaromadendrene	1457 1459	1 1	t 2 2	0.9	
	1459 1462	1.1	2.2	0.9	1, 2
cis-muurola-4(14),5-diene	1402	t			1, 2

Table 1. continuation

Compound ^a	RI ^b	Leaves (%)	Bark (%)	Wood (%)	Identification method ^d
<i>P-epi</i> -caryophyllene	1466		t		1, 2
-gurjunene	1471			0.2	1, 2
rima-7,9(11)-diene	1473		t		1, 2
-muurolene	1477			0.1	1, 2
ermacrene D	1481	18.1		0.7	1, 2
<i>amorphene</i>	1482		0.2	0.9	1, 2
selinene	1485	1.0	1.8	1.4	1, 2
valencene	1490		1.2		1, 2
iridiflorene	1492	t			1, 2
<i>pi</i> -cubebol	1492	t		0.9	1, 2
rans-muurola- 4(14),5-diene	1492	0.1		0.9	1, 2
vicyclogermacrene	1495	1.7			1, 2
<i>k</i> -himachalene	1495	1.7		0.1	1, 2
α-muirolene	1497	0.5	1.6	0.1	1, 2
		0.3		0.5	
<i>is</i> -β-bisabolene	1505	0.1	1.6		1, 2
<i>u</i> -bulnesene	1506	0.1	0.0	0.2	1, 2
-cadinene	1514	1.4	0.9	0.2	1, 2
ubebol	1518	_		0.7	1, 2
-cadinene	1524	3.5	2.3	3.0	1, 2, 3
rans-cadina-1(2),4-diene	1530	0.5	t	0.2	1, 2
<i>a</i> -cadinene	1536	0.3	0.1		1, 2
x-calacorene	1541	t	t	1.5	1, 2
<i>is</i> -muurolol-5-en-4-β-ol	1543		0.7		1, 2
lemol	1550	0.3	1.7	0.2	1, 2
lemicine	1555		t		1, 2
-calacorene	1563		t	0.5	1, 2
ermacrene B	1564	0.1			1, 2
orolidol	1565			1.8	1, 2
,5-epoxysalvial-4(14)-ene	1572	t	t	1.3	1, 2
Z)-isoelemicine	1573	ť	0.1	1.5	1, 2
pathulenol	1575	0.2	t	1.1	1, 2
aryophyllene oxide	1570	0.2	0.3	1.1	1, 2
		0.5		1.0	
lobulol	1584		0.1	1.2	1, 2
leenol	1585	0.0	0.1	1.0	1, 2
viridiflorol	1590	0.3	0.1	1.0	1, 2
alvial-4(14)-en-1-one	1593	t	t		1, 2
uaiol	1596	0.4	1.6	0.9	1, 2
umulene epoxyde II	1606	0.1	0.1	1.3	1, 2
,10-di-epi-cubenol	1613	t		8.0	1, 2
etradecanal	1614		1.6		1, 2
-epi-cubenol	1627	0.3	1.3		1, 2
-eudesmol	1632		1.5	2.7	1, 2
acorenol	1635	0.1		0.4	1, 2
pi-α-cadinol (τ-cadinol)	1641	0.2	1.8	1.7	1, 2
ubenol	1642			1.8	1, 2
pi-α-muurolol (τ-muurolol)	1645	0.3	t		1, 2
<i>c</i> -muurolol	1647	0.3	ť		1, 2
-eudesmol	1649	0.5	t	t	1, 2
-eudesmol	1653		2.6	3.4	1, 2
c-cadinol	1655	1.4	2.0	5.4	1, 2 1, 2
<i>is</i> -calamenen-10-ol			2.7		
	1661	t	0.1	2.0	1, 2
ulnesol	1668		0.1	2.9	1, 2
adalene	1672			3.4	1, 2
+)-(4S,8R)-8- <i>epi</i> -β-bisabolol	1672		0.1		1, 2
-costol	1684		t	0.8	1, 2
udesma-4(15),7-dien-1-β-ol	1687	t		1.0	1, 2
-costol	1687		t		1, 2
z-costol	1692		t		1, 2
eptadecane	1700		t		1, 2
etradecanoic acid	1765			0.6	1, 2

Table 1. continuation

Compound ^a	RI ^b	Leaves (%)	Bark (%)	Wood (%)	Identification method ^d
pentadecanal	1718		t	1.2	1, 2
mint sulfide	1743	t			1, 2
α-cyperone	1782			2.2	1, 2
iso-costic acid methyl ester	1798			1.5	1, 2
octadecane	1800		t		1, 2
hexadecanal	1820		0.1	0.2	1, 2
hexadecanoic acid	1981			0.1	1, 2
eicosane	2000		0.1		1, 2
heneicosane	2100		0.2		1, 2
Monoterpene hydrocarbons		48.9	52.4	2.8	
Oxygenated monoterpenes		0.7	9.6	3.0	
Sesquiterpene hydrocarbons		45.2	17.0	16.7	
Oxygenated sesquiterpenes		4.4	15.0	36.8	
Others		t	2.3	3.4	

^aCompounds listed in order of elution from 5% phenyl- 95% methylpolysiloxane column. ^bRI = Retention index relative to n-alkanes on the 5% phenyl- 95% methylpolysiloxane column. ^ct = Traces (<0.05%). ^dMethod: 1 = Retention Index in 5% phenyl- 95% methylpolysiloxane column; 2 = MS spectra ; 3 = Standard.

REFERENCES

- 1. Cronquist, A.; An Integrated System of Classification of Flowering Plants, Columbia University Press: New York, 1981.
- Rower, J. G. In *The Families and Genera of Vascular Plants*; Kubitzki, K., ed.; Springer Verlag: New York, 1993, vol. 2, p. 366-391.
- 3. Burger, W. C.; van der Werff, H.; Fieldiana, Bot., n.s. 1990, 23, 1.
- Chanderbali, A. S.; van der Werff, H.; Renner, S. S.; Ann. Missouri Bot. Gard. 2001, 88, 104.
- Haber, W. A.; Zuchowski, W.; Bello, E.; An introduction to Cloud forest trees: Monteverde, Costa Rica, La Nación: San José, Costa Rica, 1996, p. 134.
- González, J. In La flora digital de La Selva, http://sloth.ots.ac.cr, acessed on January 2007.
- 7. Burger, W. C.; Brittonia 1988, 40, 275.
- World Conservation Monitoring Centre, *Povedadaphne quadriporata*. In 2006 IUCN Red List of Threatened Species. 1998, www.iucnredlist.org, acessed on January 2007.
- Stenhagen, E.; Abrahamsson, S.; MacLafferty, F. W., eds.; Registry of Mass Spectral Data, Wiley: New York, 1974.
- McLafferty, F. W.; Registry of Mass Spectral Data, John Wiley & Sons: New York, 1993.
- Adams, R. P.; Identification of Essential Oil Components by Gas Chromatography/ Quadrupole Mass Spectroscopy, Allured: Carol Stream IL. 2001.