ARYLATION OF $\beta_{,\gamma}$ -unsaturated lactones by a heck-matsuda reaction: an unexpected route to aryldiazene butenolides and pyridazinones*

Jason G. Taylor and Carlos Roque D. Correia*

Instituto de Quimica, Universidade Estadual de Campinas, CP 6154, 13084-971 Campinas - SP, Brasil

Figure 1S. Compound 3; ¹H NMR (500 MHz, CDCl₃).

*e-mail: roque@iqm.unicamp.br

^{*}Dedicated to Professor Hans Viertler on the occasion of his 70th birthday and for his contributions towards the development of organic chemistry research in Brazil.

Figure 2S. Compound 3; ¹³C NMR (125 MHz, CDCl₃).

Figure 3S. Compound 4; ¹H NMR (500 MHz, DMSO).

Figure 4S. Compound 4; ¹³C NMR (125 MHz, DMSO).

Figure 5S. Compound 6a; ¹H NMR (500 MHz, CDCl₃).

Figure 6S. Compound 6a; ¹³C NMR (125 MHz, CDCl₃).

Figure 7S. Compound 6b; ¹H NMR (500 MHz, CDCl₃).

Figure 8S. Compound 6b; ¹³C NMR (125 MHz, CDCl₃).

Figure 9S. Compound 6c; ¹H NMR (500 MHz, CDCl₃).

Figure 10S. Compound 6c; ¹³C NMR (125 MHz, CDCl₃).

Figure 11S. Compound 6d; ¹H NMR (500 MHz, CDCl₃).

Figure 12S. Compound 6d; ¹³C NMR (125 MHz, CDCl₃).

Figure 13S. Compound 6e; ¹H NMR (500 MHz, CDCl₃).

Figure 14S. Compound 6e; ¹³C NMR (125 MHz, CDCl₃).

Figure 15S. Compound 6f; ¹H NMR (250 MHz, CDCl₃).

Figure 16S. Compound 6f; ¹³C NMR (62.5 MHz, CDCl₃).

Figure 17S. Compound 6g; ¹H NMR (500 MHz, CDCl₃).

Figure 18S. Compound 6g; ¹³C NMR (125 MHz, CDCl₃).

Figure 19S. Compound 6h; ¹H NMR (500 MHz, CDCl₃).

Figure 20S. Compound 6h; ¹³C NMR (125 MHz, CDCl₃).

Figure 21S. Compound 6i; ¹H NMR (500 MHz, CDCl₃).

Figure 22S. Compound 6i; ¹³C NMR (125 MHz, CDCl₃).

Figure 23S. Compound 6j; ¹H NMR (500 MHz, CDCl₃).

Figure 24S. Compound 6j; ¹³C NMR (125 MHz, CDCl₃).

Figure 25S. Compound 6k; ¹H NMR (500 MHz, CDCl₃).

Figure 26S. Compound 6k; ¹³C NMR (125 MHz, CDCl₃).

Figure 27S. Compound 61; ¹H NMR (500 MHz, CDCl₃).

Figure 28S. Compound 6l; ¹³C NMR (125 MHz, CDCl₃).