STRUCTURAL AND REACTIVITY ANALYSES OF 2-BENZYLAMINO-1,4-NAPHTHOQUINONE BY X-RAY CHARACTERIZATION, ELECTROCHEMICAL MEASUREMENTS, AND DFT SINGLE-MOLECULE CALCULATIONS[#]

Silvio Cunha*

Instituto de Química, Universidade Federal da Bahia, Campus de Ondina, 40170-290 Salvador - BA / Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente, Universidade Federal da Bahia, Campus de Ondina, 40170-290 Salvador - BA, Brasil Luis Fernandes P. Santos e Zênis N. Rocha Instituto de Química, Universidade Federal da Bahia, Campus de Ondina, 40170-290 Salvador - BA, Brasil Roberto Rivelino Instituto de Física, Universidade Federal da Bahia, Campus de Ondina, 40170-290 Salvador - BA, Brasil Jailton Ferrari Departamento de Química, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Campus I, 58051-970 João Pessoa - PB, Brasil Ivo Vencato e Carlito Lariucci

Instituto de Física, Universidade Federal de Goiás, CP 131, 74001-970 Goiânia - GO, Brasil

Table 1S. Crystal data and structure refinement

Identification code rlso5b Empirical formula C₁₇H₁₃NO₂ Formula weight 263.28 Temperature 293(2) K Wavelength 1.54180 A Crystal system, space group ?, ? Unit cell dimensions a = 10.858(2) A alpha = 90 deg. b = 24.209(4) A beta = 90 deg.c = 5.0380(10) A gamma = 90 deg.Volume 1324.3(4) A3 Z, Calculated density 4, 1.321 Mg/m³ Absorption coefficient 0.700 mm⁻¹ F(000) 552 Crystal size 0.35 x 0.15 x 0.10 mm Theta range for data collection 3.65 to 67.85 deg. Limiting indices -13<=h<=0, -29<=k<=1, 0<=l<=6 Reflections collected / unique 1421 / 1339 [R(int) = 0.0330]Completeness to theta = 67.8599.7 % Max. and min. transmission 0.9333 and 0.7917 Refinement method Full-matrix least-squares on F2 1339 / 1 / 182 Data / restraints / parameters Goodness-of-fit on F^2 1.142 Final R indices [I>2sigma(I)] R1 = 0.0665, wR2 = 0.1726 R1 = 0.1042, wR2 = 0.2428R indices (all data) Absolute structure parameter -10(10)Extinction coefficient 0.024(4)Largest diff. peak and hole 0.314 and -0.329 e.A-3

Table 2S. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A² x 10^3 . U(eq) is defined as one third of the trace of the orthogonalized Uij tensor

	Х	У	Z	U(eq)
0(1)	1534(5)	2839(2)	-840(14)	83(2)
O(2)	5673(4)	3257(2)	4504(15)	69(2)
N(1)	4404(5)	2358(2)	5880(14)	59(2)
C(1)	2494(6)	2936(3)	428(18)	60(2)
C(2)	3242(6)	3433(3)	-203(16)	57(2)
C(3)	2858(8)	3794(4)	-2319(18)	77(3)
C(4)	3596(11)	4233(4)	-2840(30)	96(3)
C(5)	4657(11)	4341(4)	-1600(20)	91(3)
C(6)	5046(8)	3994(3)	420(20)	77(3)
C(7)	4326(6)	3536(3)	1066(17)	58(2)
C(8)	4749(5)	3164(3)	3285(15)	51(2)
C(9)	3966(5)	2675(3)	3864(15)	49(2)
C(10)	2906(6)	2576(3)	2526(16)	55(2)
C(11)	3771(7)	1880(3)	6980(20)	68(2)
C(12)	3901(6)	1363(3)	5195(18)	55(2)
C(13)	3089(7)	932(3)	5660(20)	69(2)
C(14)	3175(8)	445(3)	4360(30)	90(3)
C(15)	4081(9)	371(3)	2410(20)	82(3)
C(16)	4915(9)	797(3)	1970(20)	84(3)
C(17)	4806(7)	1284(3)	3380(20)	69(2)

*e-mail: silviodc@ufba.br

[#]This work is dedicated to Prof. Hans Viertler, pioneer in electrochemistry applied to organic synthesis in Brazil, on the occasion of his 70th birthday

Table 6S. Torsion angles [deg

Table 3S. Anisotropic displacement parameters (A² x 10³. The anisotropic displacement factor exponent takes the form: -2 pi² [$h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12$]

	U11	U22	U33	U23	U13	U12
O(1)	58(3)	104(4)	87(5)	-17(4)	-29(3)	15(3)
O(2)	46(2)	62(3)	100(4)	-9(3)	-13(3)	-4(2)
N(1)	50(3)	50(3)	77(4)	-9(3)	-16(3)	0(2)
C(1)	44(3)	73(4)	62(5)	-12(4)	-9(4)	15(3)
C(2)	60(4)	55(3)	57(4)	-10(4)	-2(4)	21(3)
C(3)	89(5)	79(5)	64(5)	-22(5)	-13(5)	29(5)
C(4)	123(8)	69(5)	95(8)	10(6)	-7(8)	34(6)
C(5)	125(8)	63(5)	84(7)	2(5)	17(7)	14(5)
C(6)	81(5)	54(4)	97(7)	-9(5)	-3(6)	-2(4)
C(7)	55(4)	47(3)	71(5)	-15(4)	3(4)	8(3)
C(8)	41(3)	52(3)	58(4)	-18(3)	-3(3)	6(3)
C(9)	41(3)	49(3)	57(4)	-11(3)	-7(3)	5(2)
C(10)	41(3)	66(4)	60(4)	-18(4)	1(3)	-1(3)
C(11)	62(4)	61(4)	80(6)	-1(4)	-1(5)	1(3)
C(12)	48(3)	52(3)	66(5)	9(4)	-1(4)	6(3)
C(13)	60(4)	59(4)	89(6)	0(5)	-1(5)	0(3)
C(14)	83(5)	52(4)	136(10)	5(6)	-2(7)	-6(4)
C(15)	102(6)	55(4)	88(7)	-10(5)	-15(6)	16(4)
C(16)	98(6)	66(5)	89(7)	-2(5)	8(6)	15(4)
C(17)	68(4)	61(4)	77(6)	4(4)	6(5)	1(3)

Table 4S. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3

	Х	у	Z	U(eq)
H(1)	5105	2446	6553	71
H(3)	2140	3730	-3278	92
H(4)	3346	4476	-4168	115
H(5)	5127	4647	-2076	109
H(6)	5775	4064	1329	93
H(10)	2434	2269	2972	66
H(11A)	2904	1967	7198	81
H(11B)	4106	1799	8725	81
H(13)	2466	979	6910	83
H(14)	2632	160	4750	109
H(15)	4125	45	1440	98
H(16)	5542	755	728	101
H(17)	5371	1566	3076	83

Table 5S. Hydrogen bonds [A and deg.]

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1)O(2)	0.86	2.30	2.668(7)	105.7
C(17)-H(17)N(1)	0.93	2.60	2.921(10)	100.7
N(1)-H(1)O(1)#1	0.86	2.15	2.882(8)	143.3
C(10)-H(10)O(2)#2	0.93	2.42	3.307(9)	158.6

Symmetry transformations used to generate equivalent atoms: #1 x+1/2,-y+1/2,z+1 #2 x-1/2,-y+1/2,z

O(1)-C(1)-C(2)-C(7)	-176.9(7)
C(10)-C(1)-C(2)-C(7)	3.4(10)
O(1)-C(1)-C(2)-C(3)	-1.2(10)
C(10)-C(1)-C(2)-C(3)	179.1(6)
C(7)-C(2)-C(3)-C(4)	-2.5(11)
C(1)-C(2)-C(3)-C(4)	-178.3(8)
C(2)-C(3)-C(4)-C(5)	2.0(15)
C(3)-C(4)-C(5)-C(6)	-1.2(17)
C(4)-C(5)-C(6)-C(7)	0.8(15)
C(3)-C(2)-C(7)-C(6)	2.4(11)
C(1)-C(2)-C(7)-C(6)	178.1(7)
C(3)-C(2)-C(7)-C(8)	-179.9(6)
C(1)-C(2)-C(7)-C(8)	-4.2(10)
C(5)-C(6)-C(7)-C(2)	-1.5(13)
C(5)-C(6)-C(7)-C(8)	-179.3(7)
C(2)-C(7)-C(8)-O(2)	-176.9(7)
C(6)-C(7)-C(8)-O(2)	0.8(10)
C(2)-C(7)-C(8)-C(9)	3.5(9)
C(6)-C(7)-C(8)-C(9)	-178.8(7)
C(11)-N(1)-C(9)-C(10)	-3.0(11)
C(11)-N(1)-C(9)-C(8)	175.1(7)
O(2)-C(8)-C(9)-C(10)	178.4(7)
C(7)-C(8)-C(9)-C(10)	-1.9(9)
O(2)-C(8)-C(9)-N(1)	0.2(9)
C(7)-C(8)-C(9)-N(1)	179.9(6)
N(1)-C(9)-C(10)-C(1)	179.2(7)
C(8)-C(9)-C(10)-C(1)	1.2(10)
O(1)-C(1)-C(10)-C(9)	178.5(7)
C(2)-C(1)-C(10)-C(9)	-1.8(10)
C(9)-N(1)-C(11)-C(12)	77.8(8)
N(1)-C(11)-C(12)-C(17)	22.1(11)
N(1)-C(11)-C(12)-C(13)	-163.7(7)
C(17)-C(12)-C(13)-C(14)	-0.4(13)
C(11)-C(12)-C(13)-C(14)	-175.1(9)
C(12)-C(13)-C(14)-C(15)	-1.9(15)
C(13)-C(14)-C(15)-C(16)	3.1(16)
C(14)-C(15)-C(16)-C(17)	-2.0(15)
C(13)-C(12)-C(17)-C(16)	1.6(13)
C(11)-C(12)-C(17)-C(16)	175.7(9)
C(15)-C(16)-C(17)-C(12)	-0.3(15)
Symmetry transformations used to gene	rate equivalent ato ms

S3

Figure 2S. Intermolecular hydrogen bonding of compound 1

Figure 3S. Molecular packing of 1 in the c-axis. The top chain is in the [1 0 2] direction, and bottom chain is in the [-1 0 2] direction. For clarity, only two molecules in one upper parallel chain are indicated, and only the hydrogens in H-bond are presented

Figure 4S. Superposition of X-ray (blue) structure of 2-benzylamino-1,4-naphthoquinone and optimized structure (gray) at the B3PW91/6-31+G(d) level

Figure 5S. Cyclic voltammogram of 1 in acetonitrile with Bu_4NBF_4 (0.1 mol L⁻¹), $v = 100 \text{ mV s}^{-1}$

Figure 6S. Molecular absorption spectrum of compound 1

Figure 7S. HOMO/LUMO molecular orbital for conformers 1a-1b