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AIR POLLUTION AND EMERGENCY ADMISSIONS FOR CARDIORESPIRATORY DISEASES IN LISBON (PORTUGAL). 
Daily records of hospital admissions due to cardiorespiratory diseases and levels of PM

10
, SO

2
, CO, NO, NO

2
, and O

3
 were 

collected from 1999-2004 to evaluate the relationship between air pollution and morbidity in Lisbon. Generalised additive Poisson 
regression models were adopted, controlling for temperature, humidity, and both short and long-term seasonality. Significant positive 
associations, lagged by 1 or 2 days, were found between markers of traffic-related pollution (CO and NO

2
) and cardiocirculatory 

diseases in all age groups. Increased childhood emergency admissions for respiratory illness were significantly correlated with the 
1-day lagged SO

2
 levels coming from industrial activities.

Keywords: atmospheric pollutants; health effects; Poisson models.

INTRODUCTION

It is well known that bad air quality causes ill health and death. Bre-
athing small amounts of air pollution over many years is also considered 
hazardous. The most susceptible to air pollution exposure are the elderly, 
and those with inflammatory disorders of the respiratory airways, such 
as asthma or severe bronchitis.1,2 Children are at greater risk because 
their lungs are still growing. On the other hand, they play more actively 
outside, breathing more outdoor polluted air than most adults.

Possible links between air pollution, particularly that caused by 
atmospheric particles and SO

2
, and the number of hospital admissions 

have been recently established in studies from North America,3-12 Sou-
th America,13-16 Asia,17-22 Australia22 and Europe.23-35 However, there 
are still many aspects to elucidate the causal relationships between 
air pollution and physical condition, such as the separation of the 
short-term and long-term health effects of individual air pollutants 
and those of complex pollutant mixtures. Trends toward managing 
numerous pollutants to maximise aggregate health gains consign 
increasing value on knowing whether the effects of mixtures of pollu-
tants are greater than the sum of the effects of individual pollutants 
(synergy).36 In general, the epidemiological models to estimate the 
health outcomes of air pollution give lower risks in Europe than in 
the United States, with the lowest effects being observed in Austra-
lia.37,38 This may suggest exposition to different pollution levels and 
diverse susceptibilities of the populations. On the other hand, these 
observations indicate that conclusions within a particular country 
may not be willingly assignable to other regions.37 Therefore, more 
research is needed to infer specific regional links between air pollu-
tion and adverse health effects. Considering the uncertainties about 
the health effects of air pollutants and given the fact that this kind of 
investigation is rather inexistent in Portugal, a study was performed 
using Poisson time series regression models for the complete study 
population, and for subgroups, admitted to hospital emergencies for 
cardiorespiratory illness in Lisbon during 1999-2004.

EXPERIMENTAL

Studied area

Lisbon is the biggest urban area in Portugal with a population 
density of 7,272 inhabitants per km2 and a total area of 84 km2. At 
the time of the study, 15.6% of the Lisbon population were children 
and adolescents under 14, 67.9% were in the range 15-64 years 
old, and 16.5% were elderly people. Lisbon is set on seven terraced 
hills, north of the Tagus river estuary at 38o44’N, 9o8’W (Figure 1). 
Industries include textiles, chemicals, steel, oil and sugar refining, 
shipbuilding, soap and flour production. Traffic is the main source of 
atmospheric pollution in the city. In winter winds blow mostly from 
SW, W, and NE, but from March onwards, there is a great increase 
in the frequency of northerly winds (Figure 1S, supplementary 
material). Owing to its location on the Atlantic coast and the winds 
regime, high levels of pollutants are uncommon. Nevertheless, under 
adverse meteorological conditions, low dispersion conditions and 
thermic inversions, particularly in winter, high concentrations of air 
pollutants can be registered.

Figure 1. Distribution of the main hospitals and air quality monitoring 
stations in Lisbon
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Environmental and health data

Air quality data were obtained from monitoring stations belonging 
to the Portuguese Environmental Agency, which provide hourly obser-
vations for different atmospheric pollutants. Three measuring stations 
in Lisbon were considered: Avenida da Liberdade, Entrecampos and 
Olivais. The last one is classified as an urban background station, 
whereas the other two can be regarded as typical traffic exposed sites. 
The air quality indicators considered in the analysis were PM

10
 (24-h 

average) and the gaseous pollutants SO
2
 (24-h average), NO (maxi-

mum 1-h average), NO
2
 (maximum 1-h average), CO (maximum 1-h 

average), and O
3
 (maximum 1-h average). It was required to have at 

least 75% of the 1-h values on that particular day for the calculation 
of 24-h averages for PM

10
 and SO

2
, as well for the computation of 

maximum 1-h averages of NO, NO
2
 and CO. In the case of O

3
, it was 

requested to have at least 75% of 1-h values from 6 am until 7 pm for 
the calculation of maximum 1-h averages for O

3
, since the maximum 

O
3
 levels always occur during daylight time. The pollution values 

from the three stations were averaged to provide single estimates 
of the daily concentrations for each pollutant. Missing air pollution 
data at a monitoring station were replaced by the weighted average 
of the values of the rest of the monitoring stations. For days with 
missing values at all monitoring stations, the resulting series also had 
a missing value, which was replaced by the average of the value of 
the pollutant of the previous day and the next day. Consecutive days 
with missing values were not filled in. Figure 2S shows temporal 
features in observed air quality for the studied period.

Note that PM
10

 concentrations (Table 1) slightly exceed the 
European and Portuguese (since 2005) standard of 40 µg m-3 (based 
on an average of 3 years). Considering the daily values, which accor-
ding to the EU and the Portuguese legislation, should not surpass 50 
µg m-3 more than 35 times/year, the latter was exceed 98 times/year. 
The other pollutants under legislation (SO

2
, NO

2
, CO and O

3
) have 

their maxima exceeding the regulated values, but the averages are 
lower. Except for O

3
, the atmospheric pollutants reveal a seasonal 

pattern with high winter levels and low summer loads. Though the 
air pollution from traffic does not change noticeably from season to 
season, the increase in concentrations during the cold season might 
be explained by additional sources only operating in winter, such as 
heating (e.g. fireplaces and wood stoves). On the other hand, lower 
winter temperatures promote the decrease of mixing heights and 
the existence of inversion layers, leading to poorer dispersion and 
diminishing the dilution factors of pollutants. Ozone peaks during 
the summer months, when the weather conditions are perfect for 
its formation. Sunlight, warm temperatures and high emissions of 
precursor pollutants (nitrogen oxides and volatile organic com-
pounds) lead to high levels of this atmospheric oxidant. Moreover, 
the mean temperature and humidity values were also calculated for 
each day from data obtained from the Portuguese Meteorological 
Institute. The time series of the observed meteorological variables 
are depicted in Figure 3S.

It is worth noting that Lisbon benefits from the moderating in-
fluence of the Atlantic Ocean and of the Gulf Stream, which ensures 
the lack of extreme temperatures sometimes occurring in central 
Portugal and Spain. Temperatures show marked seasonality, reaching 
their maximum in August and minimum in January. In summer, 
temperatures currently fluctuate between 16 and 30 ºC. However, 
during some weeks of summer 2003, the atmospheric circulation 
formed an important ridge associated with south-easterly flow, and 
a strong advection of hot and dry air from northern Africa that was 
additionally heated when passing over central Iberia.39 Meteorological 
data for the Lisbon region over these periods confirm an abrupt in-
crease in the temperature values, and a significant drop in the relative 
humidity records. During the study period, the number of days with 
mean temperatures below 0 oC (frost days) was nil. On most days, 
humidity varied in a narrow range around 70 to 80%. In order to 
analyse the pairwise correlation between air pollution (except for O

3
) 

and meteorological variables the cross-correlations functions were 
calculated. In general, the correlations within air pollution variables 
are in general weak, being the maximum peak (around 0.4) achieved 
at time delays up to 3. Moreover, the temperature appears to be nega-
tively correlated with the air pollution variables and the humidity. This 
might be due to the fact that higher air pollution levels occur during 
the winter seasons, probably due to the high atmospheric stability and 
lower mixing depth, which restricts and confine pollutant dispersion. 

Health data were acquired from the Institute for Computer and 
Financial Management of Health Services (IGIF). Daily counts of 
hospital admissions in 12 institutions were recorded, for the period 
1999-2004, for all respiratory causes and for all circulatory diseases 
- ninth revision of the international classification of diseases (ICD-9 
<800): 1) all respiratory causes (ICD-9 460-519), and distributed 
by asthma (ICD-9 493) and chronic obstructive pulmonary disease, 
COPD (ICD-9 490-492, 494-496); 2) all circulatory diseases (ICD-
9 390-459), and distributed by cardiac diseases (ICD-9 390-429), 
ischemic heart disease (ICD-9 410-414) and stroke (ICD-9 430-438). 
The 12 hospital institutions had a catchment population covering the 
entire city. All official data provided by IGIF were already separated 
into the following age groups: 0-14, 15-64, and >64 years old. Table 
2 presents key values from summary statistics for cardiorespiratory 
visits to emergency services.

The high prevalence of asthma, especially among children, repor-
ted in various regions around the world was not observed in Lisbon. 
This may reflect the diffusion of educational measures about the di-
sease to children (and/or their parents), such as the need to limit daily 
activities to control asthma attacks, the consistent use of medications, 
and the implementation of low-cost measures for indoor allergen 
avoidance for reducing the number of sick days and unscheduled visits 
to health care facilities.40,41 Problems with the cardiovascular system 
are very common and do not just affect older people - many heart and 
circulatory system problems involve children and teens, too. Heart 
and circulatory problems are grouped into two categories: congenital, 
which means the problems were present at birth, and acquired, which 
means that the problems developed some time during infancy, chil-
dhood, adolescence, or adulthood. The increased number of people 
living with congenital heart disease in developed countries may be 
due to changing birth prevalence rates related to increasing maternal 
age or exposure to medication during the first semester of pregnancy. 
On the other hand, the worldwide rise in childhood obesity is so great 
that it might lead to an epidemic of premature cardiovascular diseases. 
Compared to published data on other European countries, Portuguese 
children show the second highest mean values in overweight/obesity 
with a prevalence of 31.5%.42 Besides obesity, other risk factors for 
an increased incidence of cardiovascular diseases in children and 
adolescents include diabetes mellitus and cigarette smoking. A study 

Table 1. Selected summary statistics for air pollutant concentrations (µg m-3)

Variable mean SD min 25% 50% 75% max

PM
10

43.2 20.9 10.6 28.3 43.2 53.0 207

SO
2

5.31 7.25 0.00 1.48 3.22 6.35 124

NO 132 128 2.27 49.7 86.2 169 972

NO
2

75.4 33.0 16.3 51.3 70.7 92.7 289

CO 1563 1384 228 744 1100 1796 11567

O
3

60.4 26.5 4.00 41.5 59.0 76.0 190
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conducted in 50 countries concluded that Portugal has one of the 
highest incidences (≥20/100,000) of childhood type 1 diabetes.43 The 
prevalence of tobacco smoking among young teenagers in Portugal 
was estimated to be around 40%. In addition, between 30 and 50% 
of children are exposed to passive smoking at home.44 However, it 
should be taken into account that the low number of registrations for 
COPD, asthma and ischemic heart diseases could also be due to the 
fact that the hospital administrations do not specify to IGIF the type 
of respiratory or circulatory problem, except when cardiac disease 
and stroke are diagnosed.

Statistical analysis

Hospital admissions reflect counts which are usually modelled 
with a Poisson or overdispersed Poisson distribution.30,45-49 Here, Y

i
 

will signify the number of hospital admissions for day i = 1, 2, …, n. X 
= [x

1
,…,  x

p
] denotes the (n x p) design matrix based on all covariates 

under consideration being x
j
 = [x

j;1
,…,  x

j;i
; …; x

j;n
]T. The design matrix 

X can include basic terms for smoothing splines to model nonlinear 
trends, meteorological and pollution variables, seasonal and weekly 
indicators, among others. A suitable way of modelling non-Gaussian 
response variables, such as these, is through the use of Generalised 
Linear Models (GLMs) or Generalised Additive Models (GAMs), 
which are flexible enough to include a wide range of common situa-
tions, but at the same time, allow most of the familiar ideas of normal 
linear regression to carry over.50 In the following paragraphs, some 
important aspects related with GLMs and GAMs are briefly sketched.

GLMs describe the dependence of a response variable Y
i
 on a 

set of regressors X. The conditional distribution of Y
i
|x(i), with x(i) = 

(x
1,i

,…., x
p,i

) representing the vector of covariates on day i is a linear 
exponential family density function

where l is the canonical parameter that depends on the regressors 
via a linear predictor and f is a dispersion parameter that is often 
known. The functions b(.) and c(.) are known and determine which 
member of the family is used, e.g., the binomial or Poisson distri-
bution. Conditional mean and variance of Y

i
 are given by E[Y

i
|x(i)] 

= m
i
 = b’(l

i
) and V[Y

i
|x(i)] = fb’’(l

i
), where b’(l

i
) and b’’(l

i
) are the 

first and second derivative with respect to l
i
 of b(.). In the GLMs, 

it is assumed that the dependence of the conditional mean m
i
 on the 

regressors X(i) is specifed via 

where g(.) is a known link function and b is the vector of regression 
coefficients which are typically estimated by maximum likelihood 
using the iterative weighted least squares algorithm. For the Poisson 
distribution the link function is given by

resulting in a log-linear relationship between mean and the regressors. 
The variance of the Poisson model is identical to the mean, thus the 
dispersion parameter is fixed at f = 1. In practice, however, the Poisson 
model is often useful for describing the mean m

i
, but underestimates 

the variance in the data, rendering all model-based tests liberal. One 
way of dealing with this is to use the mean regression function and 
the variance from the Poisson GLM, but to leave the dispersion pa-
rameter f unrestricted. Thus, f is not assumed to be fixed at one but 
is estimated from the data. This strategy leads to the same coefficient 
estimates as the standard Poisson model, but inference is adjusted for 
overdispersion. In addition to overdispersion, many empirical count 
data sets exhibit more zero observations than would be allowed for 
by the Poisson model. This problem is tackled by making use of va-
rious zero-inflated regression models that have been suggested in the 
literature.51,52 Zero-inflated count models are basically two-component 
mixture models combining a point mass at zero with a count distri-
bution such as Poisson, geometric or negative binomial. Thus, there 
are two sources of zeros: zeros may come from both the point mass 
and from the count component. For modelling the unobserved state 
(zero vs. count), a binary model is used: in the simplest case only with 
an intercept but potentially containing regressors. It is important to 
stress that the usefulness of Poisson regression in epidemiology relies 
on the fact that it provides an estimation of the relative risk (RR) as 
RR

i
 = exp(b

i
), being b

i
 the regression coefficients associated with an 

unit increment in a pollutant. To calculate the RRs associated with 
an increment of 10 mg m-3 in the pollutant concentration, then RR

i
 

= exp(b
i
x10), and the percentage increase in the number of patients 

admitted to hospital emergencies will be %=(RR
i
-1)x100.

GAMs extend the GLMs by fitting nonparametric functions (see 
h

j
(.) below) to estimate the relationship between the response variable 

and the regressors

Methods for estimating h
j
(.) include smoothing splines or LOESS 

smoothers. Estimation in GAMs is based on the combination of the 

Table 2. Descriptive analysis of the daily number of hospital admissions at 
the twelve hospitals, for the 1999-2004 period

Variable mean SD min max

All respiratory
0-14
15-64
>64

16.95
1.57
10.59
4.79

5.21
1.44
3.84
2.49

4.00
0.00
1.00
0.00

37.00
10.00
28.00
17.00

COPD
0-14
15-64
>64

1.70
0.10
1.35
0.24

1.42
0.34
1.24
0.54

0.00
0.00
0.00
0.00

8.00
4.00
8.00
4.00

Asthma
0-14
15-64
>64

0.24
0.01
0.13
0.10

0.52
0.03
0.39
0.34

0.00
0.00
0.00
0.00

3.00
1.00
3.00
3.00

All circulatory
0-14
15-64
>64

30.79
15.64
9.587
5.559

7.79
5.21
3.88
2.67

5.00
2.00
0.00
0.00

60.00
34.00
26.00
17.00

Cardiac
0-14
15-64
>64

24.15
14.64
5.09
4.42

6.85
5.05
2.84
2.36

4.00
2.00
0.00
0.00

52.00
33.00
18.00
15.00

Ischemic heart 
disease
0-14
15-64
>64

1.59
0.05
0.96
0.58

1.73
0.20
1.27
0.87

0.00
0.00
0.00
0.00

12.00
2.00
9.00
6.00

Stroke
0-14
15-64
>64

1.99
0.17
1.62
0.20

1.50
0.46
1.35
0.45

0.00
0.00
0.00
0.00

9.00
4.00
8.00
2.00
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local scoring algorithm and the backfitting algorithm. The local 
scoring algorithm is a generalisation of the Fisher scoring procedure 
for finding maximum likelihood estimates in GLMs. The backfitting 
algorithm is suitable for fitting any additive model, and in GAMs it is 
used within the local scoring iteration when several smooth functions 
are included in the model.53

An important assumption of any regression analysis is that the 
residuals must be uncorrelated. Since in epidemiological studies, 
however, the data are collected over time, it is likely that the response 
variable presents some serial dependence. Residual serial correlation 
can imply confounding of air pollution associations due to unmea-
sured or mismodelled variables. In fact, if the inclusion of known 
or potential confounders fails to remove the serial correlation of the 
residuals, then it is known that the estimation procedures does not 
provide valid estimates of the standard errors of the parameters. For 
example, the relationship between daily mortality and weather tempe-
rature presents the typical V-shape.54 Low environmental temperatures 
imply high mortality, whereas high weather temperatures are also 
related to high mortality. Increasing temperature up to a certain point, 
however, reduces mortality. If the regression does not account for this 
fact, positive residuals will be followed by other positive residuals 
and the same occurs with negative residuals. Thus, in time series 
regression one can use conventional regression methods followed 
by a check for the serial correlation of the residuals and need only 
proceed further if there is clear evidence of lack of independence.

In this study, when applying GAMs, linear and quadratic tendency 
terms were included to control the confounding seasonal effect. 
Dummy variables for years and weekday were also considered. Air 
pollutant variables were modelled through cubic smoothing splines 
(hereafter denoted by (s)).55 The choice of the number of degree of 
freedom (df) for the non-parametric smoothing functions was made 
on the basis of minimisation of the Akaike’s Information Criteria 
(AIC), the observed residual AutoCorrelation Function (ACF) and 
the Partial AutoCorrelation Function (PACF) plots, as well as using 
cross-validation of predicted values.56,57 Moreover, in order to con-
trol for unobserved covariates with systematic behaviour, dummy 
variables for years and days of the week were also considered. Other 
covariates considered were temperature and humidity. Furthermo-
re, it is also important to allow for time lags of the air pollutants 
variables.58 Pollution levels may affect health many days after an 
episode or several days will be required for pollutants to build up to 
their maximum effect. In fact, short-term health outcomes caused 
by pollution seem to follow a lagged pattern where biological ma-
nifestations take a time lag to develop after exposure to pollutants. 
This means that emergency room admissions recorded at a given day 
can be associated with the level of air pollution on that same day as 
well as to that of preceding days. For more accurately defining the 
model to be used in the analysis, it is crucial to determine an optimal 
lag structure. Thus, constrained distributed lag models adjusted for 
long trend, weekdays, etc., were used to assess the lagged effects of 
exposure. After a core model is best-fitted, the current value and up 
to four lags for each air pollutant variables are included according 
with their individual level of statistical significance by means of the 
stepwise procedure, and jointly on the basis of those that minimised 
AIC. An important issue which sometimes arises in this kind of 
analysis is the possibility that residuals may be serially correlated. A 
standard method to decide whether residuals are correlated or not is 
by means of the visual inspection of the ACF and the PACF graphs. 
This is also the method adopted in the present analysis. For all cases, 
the assumption of uncorrelated residuals is teneable. The statistical 
analysis was conducted with the use of the statistical package R 
(http://cran.r-project.org) using restrictive convergence parameters 
as suggested by Dominici et al..59

RESULTS AND DISCUSSION

This section presents the results obtained by fitting GAM models 
to evaluate the effects of the air pollutants on the daily number of 
admissions separated by age groups. Due to the low number of re-
gistrations in some of the respiratory causes and circulatory diseases, 
for COPD and stroke, only the age group 15-64 years is included in 
the analysis, whereas for IHD only the age groups 15-64 and >64 
years are examined. The assumptions of non-serially correlation 
and non-overdispersion are tenable for all cases. Table 3 presents 
the model regression coefficients for the best fitted GAMs for the 
various diseases.

Sulphur dioxide was found to be significantly related to emer-
gency room admissions for all respiratory diseases among children. 
By fitting the model, it was estimated that the risk for respiratory 
diseases among children increased by 14% (RR=1.139) with 95% 
confidence interval (12.6, 15.4%), for an increase of 10 µg m-3 of SO

2
 

daily concentrations. In this study, the generalised additive models 
did not reveal any statistically significant association between other 
pathologies among either the youngest age group or all the diseases 
for other population groups and the SO

2
 atmospheric levels. It is worth 

to stress that previous findings regarding the association between 
SO

2
 and hospital emergency visits have been inconsistent, because 

in some studies the pollutant was not significantly associated with 
cardiorespiratory diseases but other studies have reported positive 
relationships. Segala et al.60 in Paris, Atkinson et al.61 in London, 
and Sunyer et al.33 in the cities of Birmingham, London, Milan, Pa-
ris, Rome, Stockholm, and in the Netherlands, associated SO

2
 with 

visits to the emergency departments. In contrast, studies performed 
in Madrid,62 Rome30 and Valencia63 found no relationship between 
SO

2 
and the hospital admissions for asthma. In Lisbon, repercussion 

on respiratory diseases among children occurred with delay of only 
1-day, which could be explained by the direct effect of SO

2
 on the 

smooth muscle or via sensory afferent nerve fibres that cause reflex 
bronchoconstriction.64 In addition, SO

2
 reacts with other chemicals 

in the air to form tiny sulphate particles. When these are breathed, 
they gather in the lungs and are associated with increased respiratory 
symptoms and with a decrease in the ability of the lungs to clear fo-
reign particles and bacteria.24 Short time effects were also observed 
in Puertollano and Ciudad Real, Spain.64

A negative, but statistically significant, effect of ozone at a 2-day 
lag was observed on the respiratory health of children and elderly 
people. A slightly negative, but significant, association was also 
established between previous day ozone levels and all circulatory 
and cardiac outcomes for all three age groups. Several investigations 
have shown that high concentrations of ozone are harmful to some 
people and have shown a positive association between O

3
 and hospital 

admissions.5,16,23,29,32,48,64 However, some published studies found that, 
sometimes at low ambient O

3
 levels, the relationship between various 

measures of morbidity and ozone concentration has a negative slope, 
that is, low levels of ozone appear to be more harmful than moderate 
values.65-67 Revising the literature, Ritchie and Lenen66 refer that no 
statistically significant effect for O

3
 and various respiratory condi-

tions was reported in studies undertaken in Hong Kong, London, 
Melbourne, Mexico, southern Ontario, Seattle, Sidney, St. John (New 
Brunswick), and Vancouver. The same authors found a statistically 
significant negative association for asthma and no relationship for 
other respiratory diseases on children in the Indianapolis Metropo-
litan Area. Since there is no evidence that low levels of ozone are 
intrinsically harmful, this association seems paradoxical. Paradoxical 
ozone associations could be due to methyl nitrite from combustion of 
methyl ethers or esters in engine fuels.68 Methyl nitrite is known to 
be highly toxic, and closely related alkyl nitrites are known to induce 
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Table 3. Model regression coefficients and their standard error for the best-fitted GAM model, corresponding relative risk and percentage of increase in the 
number of emergency admissions per 10 mg m-3 increase in levels of pollutants

f Residuals df AIC Lag Coefficient (b) Standard error t-statistic p-value RR % increase

< 15 years old – all respiratory causes

Intercept 0.304 0.066 4.587 <0.01

s(SO
2
) 1 0.013 0.002 5.312 <0.01 1.1388 13.9

s(O
3
) 2 -0.003 0.0007 -3.761 <0.01 0.9704 -2.96

1.13 1770 5759

> 64 years old – all respiratory causes

Intercept 2.490 0.160 15.476 <0.01

s(CO) 2 2.73e-05 8.03e-06 3.403 <0.01 1.0003 0.03

s(O
3
) 2 -0.0010 4.85e-04 -2.904 <0.01 0.9900 -1.00

1.15 1801 8222

< 15 years old – all circulatory causes

Intercept 3.2155 0.1501 21.424 <0.01

s(NO
2
) 3 0.0008 0.0033 2.657 <0.01 1.0080 0.80

s(CO) 2 <10-5 <10-6 -3.368 <0.01 1.0001 0.01

s(O
3
) 1 -0.0008 0.0003 -2.492 0.01 0.9920 0.01

s(Temp.) 0.0099 0.0017 5.753 <0.01

1.11 896 51274

15-64 years old – all circulatory causes

Intercept 2.8803 0.1871 15.392 <0.01

s(NO
2
) 3 0.0005 0.0002 2.150 0.031 1.0050 0.50

s(O
3
) 1 -0.0011 0.0003 -2.995 <0.01 0.9891 -1.09

s(Temp.) 0.0171 0.0021 7.943 <0.01

1.23 1782 9661

> 64 years old – all circulatory causes

Intercept 2.542 0.2220 11.448 <0.01

s(NO
2
) 3 0.0022 0.0004 5.233 <0.01 1.0222 2.22

s(CO) 2 <-10-5 <10-5 -3.052 <0.01 1.0000 0.00

s(O
3
) 1 -0.0017 0.0005 -3.303 <0.01 0.9831 -1.69

1.09 1768 8356

< 15 years old – cardiac diseases

Intercept 2.880 0.0410 70.24 <0.01

s(NO
2
) 3 0.0012 0.0002 6.00 <0.01 1.0121 1.21

s(CO) 1 <-10-5 <10-5 -2.86 <0.01 1.0001 0.01

(sO
3
) 1 -0.0010 0.0003 -3.33 <0.01 0.9900 -1.00

s(Temp.) 0.0090 0.0015 6.00 <0.01

1.13 1742 10217

15-64 years old – cardiac diseases

Intercept 2.208 0.2326 9.49 <0.01

s(NO
2
) 3 0.0012 0.0004 3.00 <0.01 1.0121 1.21

s(CO) 1 <-10-5 <10-5 -2.58 <0.01 1.0000 0.00

s(O
3
) 1 -0.0015 0.0005 -3.00 <0.01 0.9851 -1.49

s(Temp.) 0.0132 0.0029 4.55 <0.01

1.23 1785 8381

> 64 years old – cardiac diseases

Intercept 2.066 0.1113 18.56 <0.01

s(NO
2
) 3 0.002 0.0004 5.69 <0.01 1.0202 2.02

s(CO) 2 <-10-5 <10-5 -3.78 <0.01 1.0000 0.00

s(O
3
) 1 -0.002 <10-5 -3.58 <0.01 0.9802 -1.98

s(Temp.) 0.011 0.0028 4.00 <0.01

1.09 1790 7871
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respiratory sensitivity in humans.69 Given that sunlight is essential 
to create ozone by photochemical oxidation, a probable explanation 
for the paradoxical ozone associations would be the existence of this 
nitrite pollutant that is rapidly destroyed by solar radiation.68 Hence, 
methyl nitrite is negatively correlated with O

3
. Days with low solar 

radiation are likely to be days with both low ozone and high methyl 
nitrite, so that low ozone would be a marker for low solar radiation 
and high methyl nitrite. Because sunlight has opposing effects on 
ozone and methyl nitrite, one would expect the most acute methyl 
nitrite effects in winter.68

In Lisbon, daily emergency admissions for all respiratory causes 
showed a statistically significant positive association with CO at 
a 2-day lag for patients aged above 64 years (Table 3). A similar 
relationship was established between the pollutant and the number 
of daily emergencies due to all circulatory symptoms for children 
less than 15 years of age and elderly people. For all age groups, 
daily levels of CO were significant and positively associated with 
cardiac disease. For children (< 15) and adults (15-64 years old) 
there was a 1-day delayed effect of CO, while a 2-day late outcome 
was observed for elderly people. Since the effects of CO exposure 
associated with hypoxic stress are in general felt immediately after 
inhalation, it was postulated that a toxic mechanism besides hypoxia 
might be involved. It was observed that exposure of blood platelets 
to relatively low levels of CO caused the cells to release nitric oxide 
and to produce peroxynitrite, which produces oxidative stress and is 
known to damage the vascular endothelium.70 Carbon monoxide has 
been related to respiratory and cardiovascular conditions in several 
investigations.30,31 However, in spite of recent epidemiological and 
biochemical studies, the effects on health of long-lasting but low level 
exposure to CO are still uncertain. A more careful examination of 
the role of this pollutant would be desirable, since it is also known 
that ambient CO could precipitate or exacerbate already existing 
health conditions.

In the present study, the GAMs fitted show a statistically signifi-
cant positive association at a 3-day lag between NO

2
 levels and total 

circulatory and cardiac conditions in all age groups. No significant 
association between the pollutant and respiratory morbidity has been 
found. According to the models, the risk for circulatory diseases 
increased by 0.8% (0.793, 0.807%), 0.5% (0.49, 0.51%) and 2.2% 
(2.19, 2.21%) per 10 µg m-3 increase in daily levels of NO

2
 for the 

<15, 15-64, and >64 age groups, respectively. The same unit change 
in the pollutant increases the risk by 1.2% (1.18, 1.22) and 2.0% 
(1.19, 2.1%) among nonelderly and elderly people, respectively. Al-
though NO

2
 has been known to increase susceptibility to respiratory 

infections, results of different studies that looked at the link between 
NO

2
 and respiratory outcomes still show discrepancies. For instance, 

Spix et al.71 observed no significant relationship between NO
2
 and 

respiratory admissions for the 15-64 and >64 year age groups from 
five West European cities (London, Amsterdam, Rotterdam, Paris, and 
Milan). Atkinson et al.61 reported no significant associations between 
NO

2
 and respiratory admissions in London overall or within any of 

three age groups (0-14, 15-64, and >64 years). A lack of associations 
between NO

2
 and hospital admissions in Paris for respiratory diseases 

was also observed by Dab et al..72 In contrast, Wong et al.73 reported 
significant associations between NO

2
 and respiratory admissions for 

0-4, 5-64 and ≥65 year age groups in Hong Kong. Luginaah et al.74 
found a significant association between levels of NO

2
 lagged 2-days 

and respiratory admissions for females 0-14 years of age, but not for 
any of the other female or male groups.

In Lisbon, no significant correlation between PM
10

 and health 
conditions was found. Time-series analysis conducted in the scope 
of the “Air Pollution and Health, European Approach” (APHEA) 
project75 and within other epidemiological studies in Europe30,63 have 

suggested that gaseous air pollutants, in particular CO and NO
2
, are 

more important predictors of acute hospitalisation for respiratory 
conditions than particulate matter. The fact that European studies seem 
to show more NO

2
/CO effects than US studies deserves additional 

investigation. Because of different combustion sources, it may be that 
NO

2
/CO are better proxies for ultrafine particles in Europe, where 

there is a greater use of diesel, than in the USA.30 In fact, particulates 
pose greater problems, since the biological effect can be influenced 
by particle size and composition. It is also possible that PM

10
 is itself 

a by-product of some chemical reactions involving other pollutants 
and that these precursors are the real cause of morbidity. 

Among the meteorological variables recorded, significant positive 
association was found only between temperature and attendance for 
all circulatory and cardiac diseases among all age groups (Table 3), 
indicating that higher ambient temperatures could generate higher rates 
of hospital admissions. The nature and magnitude of the association 
between temperature and human health has been increasingly recogni-
sed and the physiological effects of hyperthermia are well known.76,77 

It should be mentioned that numerous methodological factors 
restrain the comparability and power of the various studies, including: 
(i) absence of measurement of additional atmospheric compounds 
with possible biological effect (e.g. benzene and sulphate), besides 
the traditional air pollutants; (ii) difficulty of comparing risks for 
particles of different aerodynamic diameter which do not have the 
same health impact, especially on the respiratory tract; (iii) extrapo-
lation of measurements performed by fixed monitors which do not 
take into account the movement of persons nor the level of indoor 
air quality, (iv) assessment of daily average levels of air pollutants 
instead time-period peaks, which may produce more adverse effects; 
and (v) difficulty of evaluating the interaction of pollutants with 
confounding factors, such as viral infections or smoking. We did 
not adjust the result for cigarette smoking simply because data on 
tobacco consumption were not available. There are both spatial 
and temporal variations for exposure and outcomes in air pollution 
studies. Both time series and case-crossover designs at a community 
level can efficiently adjust for some measured and unmeasured time-
invariant characteristics of the subjects (such as age, smoking status 
and spatial characteristics) via matching, and therefore, the potential 
confounding from these measured and unmeasured characteristics is 
minimised.78 In fact, human health impacts of acute exposure to air 
pollution problems associated with confounding factors are reduced in 
these studies because population characteristics, such as smoking, do 
not change much over the study period.79 In spite of the limitations of 
this study, atmospheric pollution in Lisbon appears to lead to poorer 
clinical outcomes in patients with respiratory and cardiocirculatory 
diseases. In the broader context of environmental guidelines, it is 
regularly discussed that where there is reasonable substantiation of 
an adverse health effect, authorities should take action ahead of the 
evidence to become assured.

CONCLUSIONS

Air pollution levels in Lisbon are capable of producing harm-
ful effects in the health of the population. A significant association 
between SO

2
 and increased childhood emergency admissions for 

respiratory illness was showed. Significant associations between 
circulatory and cardiac diseases for all age groups and proxy 
markers of road traffic pollution (NO

2 
and CO) were also found. 

High excess relative risk of emergency daily morbidity associated 
with the short-term exposure to air pollutants, especially for those 
considered more susceptible, point out the need for adoption of 
mitigation measures. The reported associations, together with the 
results of studies performed in the United States and in European 
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regions add to the evidence that air pollution promotes adverse 
effects on cardiorespiratory health even when pollutant levels are 
lower than the air quality standards. These results suggest that air 
quality standards less than the current values would be needed to 
avoid any adverse health effects among the general population. 
In addition, stricter control at source, whether by transport poli-
cies, support policies for efficient municipal heating systems, or 
regulatory changes, should decrease the concentrations of the main 
atmospheric pollutants and thus reduce morbidities. It would be 
prudent public attentiveness of the alert situations. By taking suitable 
measures, the risk for cardiorespiratory patients could be reduced.

SUPPLEMENTARY MATERIAL

Additional information concerning the temporal variation of air 
pollutant concentrations and meteorological parameters is available 
free of charge at http://quimicanova.sbq.org.br, as a PDF file.
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