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Genetic algorithm and multiple linear regression (GA-MLR), partial least square (GA-PLS), kernel PLS (GA-KPLS) and Levenberg-
Marquardt artificial neural network (L-M ANN) techniques were used to investigate the correlation between retention index (RI) and 
descriptors for 116 diverse compounds in essential oils of six Stachys species. The correlation coefficient LGO-CV (Q2) between 
experimental and predicted RI for test set by GA-MLR, GA-PLS, GA-KPLS and L-M ANN was 0.886, 0.912, 0.937 and 0.964, 
respectively. This is the first research on the QSRR of the essential oil compounds against the RI using the GA-KPLS and L-M ANN. 
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INTRODUCTION 

An essential oil is a volatile mixture of organic compounds 
derived from odorous plant material by physical means.1 The com-
position of essential oil has been extensively investigated because of 
its commercial interest in the fragrance industry (soaps, colognes, 
perfumes, skin lotion and other cosmetics), in aromatherapy (re-
laxant), in pharmaceutical preparations for its therapeutic effects 
as a sedative, spasmolytic, antioxidant, antiviral and antibacterial 
agent.2,3 Recently it has also been employed in food manufacturing 
as natural flavouring for beverages, ice cream, candy, baked goods 
and chewing gum. Stachys L. (Lamiaceae, Lamioideae) is among 
the largest genera of Lamiaceae. Stachys consists of annual and 
perennial herbs and subshrubs showing extensive variation in mor-
phological and cytological characters.4 Stachys L. is a large genus 
comprising over 300 worldwide species and is widely spread throu-
ghout Northern Europe and the Mediterranean.5 The constituents 
of essential oil of these spices includes: oxygenated monoterpenes, 
monoterpene hydrocarbons, oxygenated sesquiterpenes, sesquiter-
pene hydrocarbons, carbonylic compounds, phenols, fatty acids 
and esters. These entire compounds have been identified by gas 
chromatography (GC) and gas chromatography-mass spectrometry 
(GC–MS). GC and GC–MS are the main methods for identification 
of these volatile plant oils. To increase the reliability of the MS 
identification, comprehensive two-dimensional GC–MS can be 
used. This technique is based on two consecutive GC separations, 
typically according to boiling point and polarity.6 The compounds 
are identified by comparison of retention index with those repor-
ted in the literature and by comparison of their mass spectra with 
libraries or with the published mass spectra data.7

Chromatographic retention for capillary column gas chromatogra-
phy is the calculated quantity, which represents the interaction between 
stationary liquid phase and gas-phase solute molecule. This interaction 
can be related to the functional group, electronic and geometrical 
properties of the molecule.8,9

Mathematical modeling of these interactions helps chemists 
to find a model that can be used to obtain a deep understanding 

about the mechanism of interaction and to predict the retention 
index (RI) of new or even unsynthesized compounds.10 Building 
retention prediction models may initiate such theoretical approach, 
and several possibilities for retention prediction in GC. Among all 
methods, quantitative structure-retention relationships (QSRR) are 
most popular. In QSRR, the retention of given chromatographic 
system was modeled as a function of solute (molecular) des-
criptors. A number of reports, deals with QSRR retention index 
calculation of several compounds have been published in the 
literature.11-13 The QSRR/QSAR models apply to multiple linear 
regression (MLR) and partial least squares (PLS) methods often 
combined with genetic algorithms (GA) for feature selection.14,15 

Because of the complexity of relationships between the proper-
ty of molecules and structures, nonlinear models are also used to 
model the structure–property relationships. Levenberg -Marquardt 
artificial neural network (L-M ANN) is nonparametric nonlinear 
modeling technique that has attracted increasing interest. In the 
recent years, nonlinear kernel-based algorithms as kernel partial 
least squares (KPLS) have been proposed.16,17 The basic idea of 
KPLS is first to map each point in an original data space into a 
feature space via nonlinear mapping and then to develop a linear 
PLS model in the mapped space. According to Cover’s theorem, 
nonlinear data structure in the original space is most likely to be 
linear after high-dimensional nonlinear mapping.18 Therefore, 
KPLS can efficiently compute latent variables in the feature space 
by means of integral operators and nonlinear kernel functions. 
Compared to other nonlinear methods, the main advantage of the 
kernel based algorithm is that it does not involve nonlinear opti-
mization. It essentially requires only linear algebra, making it as 
simple as the conventional linear PLS. In addition, because of its 
ability to use different kernel functions, KPLS can handle a wide 
range of nonlinearities. In the present study, GA-MLR, GA-PLS, 
GA-KPLS and L-M ANN were employed to generate QSRR models 
that correlate the structure of some compound; with observed RI. 
The present study is a first research on QSRR of the essential oil 
compounds against the RI, using GA-KPLS and L-M ANN. The 
performance of these models was compared with those obtained by 
the GA-MLR and GA- PLS methods.



Quantitative structure–retention relationships analysis of retention index of essential oils 243Vol. 34, No. 2

EXPERIMENTAL

Data set

Retention index of essential oils of six Stachys species, S. cretica L. 
ssp. vacillans Rech. fil., S. germanica L., S. hydrophila Boiss., S. nivea 
Labill., S. palustris L. and S. spinosa L., obtained by hydrodistillation, 
was studied by GC and GC–MS, which contains 116 compounds19 
(Table 1). This set was measured at the same condition with the Inno-
wax column (60 m x 0.25 mm i.d.; 0.33 m m film thickness) for GC 
measurement. GC–MS analysis was also performed on an Agilent 6850 
series II apparatus, fitted with a fused silica HP-1 capillary column 
(30 m x 0.25 mm i.d.; 0.33 m m film thickness). The retention index 
of these compounds was decreased in the range of 3710 and 1075 for 
both Octadecanoic acid and a-Pinene, respectively.

In order to evaluate the generated models, we used leave-group-out 
cross validation (LGO-CV). Cross validation consists of the follo-
wing: removing one (leave-one-out) or groups (leave-group-out) of 
compounds in a systematic or random way; generating a model from 
the remaining compounds, and predicting the removed compounds.

Descriptor calculation

All structures were drawn with the HyperChem software (version 
6). Optimization of molecular structures was carried out by semi-
empirical AM1 method using the Fletcher- Reeves algorithm until the 
root mean square gradient of 0.01 was obtained. Since the calculated 
values of the electronic features of molecules will be influenced by 
the related conformation. Some electronic descriptors such as dipole 
moment, polarizability and orbital energies of LUMO and HOMO 
were calculated by using the HyperChem software. Also optimized 
structures were used to calculate 1497 descriptors by DRAGON 
software version 3.20 

Software and programs

A Pentium IV personal computer (CPU at 3.06 GHz) with windows 
XP operational system was used. Geometry Optimization was perfor-
med by HyperChem (version 7.0 Hypercube, Inc.), Dragon software 
was used to calculate of descriptors. MLR analysis was performed by 
the SPSS Software (version 13, SPSS, Inc.) by using enter method 
for model building. Minitab software (version 14, Minitab) was used 
for the simple PLS analysis. Cross validation, GA-MLR, GA-PLS, 
GA-KPLS, L-M ANN and other calculation were performed in the 
MATLAB (Version 7, Mathworks, Inc.) environment.

THEORY

Genetic algorithm

Genetic algorithm has been proposed by J. Holland in the early 
1970s but it was possible to apply them with reasonable computing 
times only in the 1990s, when computers became much faster. GA is a 
stochastic method to solve the optimization problems, defined by fitness 
criteria applying to the evolution hypothesis of Darwin and different 
genetic functions, i.e., crossover and mutation.21 In GA, each individual 
of the population, defined by a chromosome of binary values as the 
coding technique, represented a subset of descriptors. The number of 
genes at each chromosome was equal to the number of descriptors. The 
population of the first generation was selected randomly. A gene was 
given the value of one, if its corresponding descriptor was included in 
the subset; otherwise, it was given the value of zero.22 The GA performs 
its optimization by variation and selection via the evaluation of the 

Table 1.  The data set and the corresponding observed and predicted RI values 
by L-M ANN for the training and test sets

No Name RI Exp RI ANN REANN (%)a

Training set

1 a -Pinene 1075 1064 1.02

2 b-Pinene 1118 1110 0.72

3 d-Carene 1157 1132 2.16

4 Heptanal 1195 1209 1.17

5 Limonene 1203 1217 1.16

6 b-Phellandrene 1218 1216 0.16

7 Ethyl hexanoate 1233 1233 0.00

8 2-Pentylfuran 1244 1257 1.05

9 1-Octen-3-ol 1254 1234 1.59

10 Terpinolene 1265 1257 0.63

11 1-Octen-3-one 1294 1301 0.54

12 (E,E)-2,4-Hexadienal 1395 1363 2.29

13 cis-Linalool 1450 1507 3.93

14 a-Cubebene 1466 1482 1.09

15 a-Copaene 1497 1464 2.20

16 Epi-Bicyclosesquiphellandrene 1498 1521 1.54

17 Pentadecane 1500 1507 0.47

18 Isomenthone 1502 1511 0.60

19 b-Bourbonene 1535 1534 0.07

20 b-Cubebene 1547 1551 0.26

21 Linalool 1553 1553 0.00

22 a-Longipinene 1579 1562 1.08

23 b-Elemene 1598 1583 0.94

24 (E)-Caryophyllene 1612 1620 0.50

25 γ-Elemene 1650 1662 0.73

26 (E)-2-Decenal 1655 1652 0.18

27 Pulegone 1662 1656 0.36

28 Phenylacetaldehyde 1663 1660 0.18

29 (Z)-Caryophyllene 1666 1653 0.78

30 cis-b-Farnesene 1673 1682 0.54

31 a-Humulene 1689 1697 0.47

32 a-Terpineol 1706 1734 1.64

33 Dodecanol 1709 1716 0.41

34 b-Selinene 1715 1713 0.12

35 Borneol 1719 1728 0.52

36 Dodecanal 1724 1720 0.23

37 Germacrene D 1726 1726 0.00

38 a-Muurolene 1740 1761 1.21

39 a-Selinene 1744 1731 0.75

40 Bicyclogermacrene 1756 1740 0.91

41 (E,E)-a-Farnesene 1760 1746 0.80

42 d-Cadinene 1773 1786 0.73

43 γ-Cadinene 1776 1791 0.84

44 ar-Curcumene 1784 1785 0.06

a: Relative error
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fitness function η. Fitness function was used to evaluate alternative 
descriptor subsets that were finally ordered according to the predictive 
performance of related model by cross validation. The fitness function 
was proposed by Depczynski et al..23 The root-mean-square errors of 
calibration (RMSEC) and prediction (RMSEP) were calculated and 
the fitness function was calculated by Equation 1.

 m = {[(mc - n - 1) RMSEC2 + mpRMSEP2]/(mc+mp-n-1)}1/2

 
(1)

where mc  and mp  are the number of compounds in the calibration 
and prediction set and n represent the number of selected variables, 
respectively. The parameter algorithm reported in Table 2.

Linear models

Multiple linear regression 
A major step in constructing the QSRR model is finding a set of 

molecular descriptors that represent variation in the structural property 
of the molecules. The modeling and prediction of the physicochemical 
properties of organic compounds is an important objective in many 

Table 1.  Continuation

No Name RI Exp RI ANN REANN (%)a

Training set

45 (E)-b-Damascenone 1787 1771 0.90

46 Methyl salicylate 1798 1807 0.50

47 Cuparene 1822 1837 0.82

48 (E,E)-2,4-Decadienal 1827 1854 1.48

49 Calamenenee 1839 1852 0.71

50 p-Cymen-8-ol 1856 1867 0.59

51 Geraniol 1857 1860 0.16

52 (E)-2-Dodecenal 1868 1882 0.75

53 Benzyl alcohol 1893 1850 2.27

54 2-Phenyl ethyl alcohol 1925 1901 1.25

55 Tetradecanal 1935 1907 1.45

56 b-Ionone 1958 1969 0.56

57 Caryophyllene 2008 2034 1.29

58 Methyl cinnamate 2050 2078 1.37

59 a-Copaen-8-ol 2076 2093 0.82

60 Octanoic 2088 2051 1.77

61 Globulol 2098 2071 1.29

62 Methyl pentadecanoate 2099 2099 0.00

63 Heneicosane 2100 2117 0.81

64 Viridiflorol 2104 2114 0.48

65 Guaiol 2108 2110 0.09

66 a-Cedrol 2120 2109 0.52

67 Hexahydrofarnesyl acetone 2131 2114 0.80

68 Cedrenol 2133 2131 0.09

69 Spathulenol 2150 2162 0.56

70 t-Cadinol 2158 2172 0.65

71 Eugenol 2186 2203 0.78

72 Nonanoic 2190 2227 1.69

73 Thymol 2198 2217 0.86

74 Methyl hexadecanoate 2208 2214 0.27

75 t-Muurolol 2209 2245 1.63

76 a-Bisabolol 2219 2204 0.68

77 a-Cadinol 2255 2218 1.64

78 Decanoic 2298 2254 1.91

79 Caryophylladienol 2316 2349 1.42

80 Dihydroactinidiolide 2354 2368 0.59

81 Indole 2471 2564 3.76

82 Dodecanoic 2503 2580 3.08

83 Benzophenone 2512 2549 1.47

84 (Z)-Phytol 2622 2504 4.50

85 (E)-Phytol 2625 2654 1.10

86 Tetradecanoic acid 2713 2792 2.91

87 Phenanthrene 2814 2907 3.30

88 Pentadecanoic acid 2822 2837 0.53

89 Heptadecanoic acid 2975 2856 4.00

a: Relative error

Table 1.  Continuation

No Name RI Exp RI ANN REANN (%)a

Training set

90 (Z)-9-Octadecenoic acid 3157 3009 4.69

91 (Z,Z,Z)-9,12,15-Octadecatrienoic acid 3193 3017 5.51

92 Octadecanoic acid 3402 3115 8.44

Test set

93 Sabinene 1132 1110 1.94

94 (E)-2-Hexenal 1209 1134 6.20

95 p-Cymene 1278 1192 6.73

96 a-Ylangene 1493 1586 6.23

97 (E,E)-2,4-Heptadienal 1506 1537 2.06

98 Benzaldehyde 1541 1541 0.00

99 4-Terpineol 1611 1670 3.66

100 Acetophenone 1657 1659 0.12

101 γ-Muurolene 1704 1753 2.88

102 trans-Sabinol 1721 1704 0.99

103 b-Bisabolene 1743 1722 1.20

104 Naphthalene 1763 1763 0.00

105 p-Methoxyacetophenone 1797 1836 2.17

106 (Z)-b-Damascenone 1835 1874 2.13

107 a-Calacorene 1918 1982 3.34

108 (E)-Nerolidol 2050 2144 4.59

109 b-Oplopenone 2098 2062 1.72

110 4-Vinylguaiacol 2180 2085 4.36

111 Carvacrol 2239 2157 3.66

112 Cadalene 2256 2292 1.60

113 13-epi-Manoyl oxide 2380 2507 5.34

114 Benzyl benzoate 2655 2894 9.00

115 Hexadecanoic acid 2931 3216 9.72

116 (Z,Z)-9,12-Octadecadienoic acid 3157 3032 3.96

a: Relative error
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scientific fields.24,25 MLR is one of the most modeling methods in 
QSRR. MLR method provides an equation that links the structural 
features to the RI of the compounds:

 RI = a0 + a1d1 +· · ·+andn (2)

where a0 and ai are intercept and regression coefficients of the descrip-
tors, respectively. di has the common definition, variable or descriptor 
in this case, the elements of this vector are equivalent numerical values 
of descriptors of the molecules. 

Partial least squares
PLS is a linear multivariate method for relating the process varia-

bles X with responses Y. PLS can analyze data with strongly collinear, 
noisy, and numerous variables in both X and Y.26 PLS reduces the 
dimension of the predictor variables by extracting factors or latent 
variables that are correlated with Y while capturing a large amount of 
the variations in X. This means that PLS maximizes the covariance 
between matrices X and Y. In PLS, the scaled matrices X and Y are 
decomposed into score vectors (t and u), loading vectors (p and q), 
and residual error matrices (E and F):

  

  (3)

where a is the number of latent variables. In an inner relation, the 
score vector t is linearly regressed against the score vector u. 

 Ui = biti+hi  (4)

where b is regression coefficient that is determined by minimizing 
the residual h. It is crucial to determine the optimal number of latent 
variables and cross validation is a practical and reliable way to test 
the predictive significance of each PLS component. There are several 
algorithms to calculate the PLS model parameters. In this work, the 
NIPALS algorithm was used with the exchange of scores.27

Nonlinear 

Kernel partial least squares
The KPLS method is based on the mapping of the original input 

data into a high dimensional feature space ℑ where a linear PLS 
model is created. By nonlinear mapping Φ: x∈ℜn - Φ(x)∈ℑ, a KPLS 
algorithm can be derived from a sequence of NIPALS steps and has 
the following formulation:28

1. Initialize score vector w as equal to any column of Y.
2. Calculate scores u = ΦΦTw and normalize u to ||u|| = 1, where 

Φ is a matrix of regressors.
3. Regress columns of Y on u: c = YTu, where c is a weight vector.
4. Calculate a new score vector w for Y: w = Yc and then nor-

malize w to ||w||=1.
5. Repeat steps 2–4 until convergence of w.
6. Deflate ΦΦT and Y matrices:

 ΦΦT = (Φ - uuTΦ)(Φ - uuTΦ)T (5)

 Y = Y − uuTY (6)

7. Go to step 1 to calculate the next latent variable.
Without explicitly mapping into the high-dimensional feature 

space, a kernel function can be used to compute the dot products 
as follows:

 k(xi,xj) = Φ(xi)
T Φ(xj) (7)

ΦΦT represents the (n×n) kernel Gram matrix K of the cross dot 
products between all mapped input data points Φ(xi),i = 1, ..., n. The 
deflation of the ΦΦT = Kmatrix after extraction of the u components 
is given by:

 K = (I − uuT)K(I − uuT) (8)

where I is an m-dimensional identity matrix. Taking into account the 
normalized scores u of the prediction of KPLS model on training 
data Y is defined as:

 Ŷ = KW (UTKW)-1UTY = UUTY (9)

For predictions on new observation data
 
Ŷ t , the regression can 

be written as:

 Ŷ t = KtW(UTKW)-1UTY (10)

where Kt is the test matrix whose elements are Kij =K(xi, xj) where xi 
and xj present the test and training data points, respectively.

Artificial neural network

An artificial neural network (ANN) with a layered structure is a 
mathematical system that stimulates the biological neural network; 
consist of computing units named neurons and connections between 
neurons named synapses.29-31 Input or independent variables are con-
sidered as neurons of input layer, while dependent or output variables 
are considered as output neurons. Synapses connect input neurons to 
hidden neurons and hidden neurons to output neurons. The strength 
of the synapse from neuron i to neuron j is determined by mean of 
a weight, Wij. In addition, each neuron j from the hidden layer, and 
eventually the output neuron, are associated with a real value bj, named 
the neuron’s bias and with a nonlinear function, named the transfer 
or activation function. Because the artificial neural networks (ANNs) 
are not restricted to linear correlations, they can be used for nonlinear 
phenomena or curved manifolds.29 Back propagation neural networks 
(BNNs) are most often used in analytical applications.30 The back 
propagation network receives a set of inputs, which is multiplied by 

Table 2. Parameters of the genetic algorithm

Population size: 30 chromosomes

On average, five variables per chromosome in the original population

Regression method: MLR, PLS, KPLS

Cross validation: leave-group-out

Number subset: 4

Maximum number of variables selected in the same chromosome: (MLR, 
10), (PLS, 30)

Elitism: True

Crossover: multi Point

Probability of crossover: 50%

Mutation: multi Point

Probability of mutation: 1%

Maximum number of components: (PLS, 10)

Number of runs: 100
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each node and then a nonlinear transfer function is applied. The goal 
of training the network is to change the weight between the layers in 
a direction to minimize the output errors. The changes in values of 
weights can be obtained using Equation 11:

 ∆Wij,n = Fn + a∆Wij,n-1 (11)

where ∆Wij,n is the change in the weight factor for each network 
node, a is the momentum factor, and F is a weight update func-
tion, which indicates how weights are changed during the learning 
process. There is no single best weight update function which 
can be applied to all nonlinear optimizations. One need to choo-
se a weight update function based on the characteristics of the 
problem and the data set of interest. Various types of algorithms 
have been found to be effective for most practical purposes such 
as Levenberg-Marquardt (L-M) algorithm.

Levenberg -Marquardt algorithm

While basic back propagation is the steepest descent algorithm, 
the Levenberg-Marquardt algorithm32 is an alternative to the conjugate 
methods for second derivative optimization. In this algorithm, the 
update function, Fn, can be calculated using Equations 12 and 13:

 F0 = -g0 (12)

 Fn = - [JT x J + mI]-1 x JT x e (13)

where J is the Jacobian matrix, m is a constant, I is a identity matrix, 
and e is an error function.33

RESULTS AND DISCUSSION

Linear models 

GA-MLR analysis
To reduce the original pool of descriptors to an appropriate size, 

the objective descriptor reduction was performed using various criteria. 
Reducing the pool of descriptors eliminates those descriptors which 
contribute either no information or whose information content is re-
dundant with other descriptors present in the pool. From the variable 
pairs with R > 0.90, only one of them was used in the modeling, while 
the variables over 90% and equal to zero or identical were eliminated. 
With the use of these criteria, 1014 out of 1497 original descriptors 
were eliminated and remaining descriptors were employed to gener-
ate the models with the GA-MLR program. In order to minimize the 
information overlap in descriptors and to reduce the number of descrip-
tors required in regression equation, the concept of non-redundant 
descriptors was used in our study. The best equation is selected on 
the basis of the highest multiple correlation coefficient leave-group-
out cross validation (LGO-CV) (Q2), the least RMSECV and relative 
error of prediction and simplicity of the model. These parameters are 
probably the most popular measure of how well a regression model fits 
the data. Among the models proposed by GA-MLR, one model had 
the highest statistical quality and was repeated more than the others.
This model had five molecular descriptors including constitutional 
descriptors (sum of atomic van der Waals volumes (scaled on Carbon 
atom)) (Sv), topological descriptors (mean topological charge index of 
order1) (JGI1), atom-centred fragments (H attached to C0 (sp3) no X 
attached to next C) (H-046) and electronic descriptors (dipole moment 
(m) and highest occupied molecular orbital (HOMO)). The best QSRR 
model obtained is given below together with the statistical parameters 
of the regression in Equation 14.

RI = 254.54 (± 89.570) + 94 (±16.905 Sv) – 889.068 (± 385.064 
JGI1) - 45.493 (± 9.627 H-046) + 60.559 (± 27.924m) -70.717 
(± 21.384 HOMO)   (14)

Since mean topological charge index of order1 coefficient is bigger 
in the equation, it is very important descriptor compared to the other 
descriptors in the model. The JGI1, H-046 and HOMO displays a nega-
tive sign which indicates that when these descriptors increase the RI 
decreases. The Sv and m displays a positive sign which indicates that 
the RI is directly related to these descriptors. The predicted values of 
RI are plotted against the experimental values for training and test sets 
in Figure 1a. The statistical parameters of this model, constructed by 
the selected descriptors, are depicted in Table 3. 

GA-PLS analysis
The colinearity problem of the MLR method has been overcome 

through the development of the partial least-squares projections to 
latent structures (PLS) method. For this reason, after eliminating de-
scriptors that had identical or zero values for greater than 90% of the 
compounds, 1097 descriptor were remained. These descriptors were 
employed to generate the models with the GA-PLS and GA-KPLS 
program. The best PLS model contains 7 selected descriptors in 3 

Figure 1. Plots of predicted retention index against the experimental values 
by (a) GA-MLR and (b) GA-PLS models

Table 3. The statistical parameters of different constructed QSRR models

Model                              Training set                         Test set

R2 Q2 RE RMSE N R2 Q2 RE RMSE N

GA-MLR 0.913 0.913 1.91 68.02 92 0.895 0.886 4.12 110.36 24

GA-PLS 0.929 0.924 1.66 61.84 92 0.904 0.912 3.89 107.65 24

GA-KPLS 0.941 0.941 1.38 57.09 92 0.937 0.937 3.88 106.84 24

L-M ANN 0.986 0.983 1.23 49.47 92 0.968 0.964 3.48 98.77 24
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latent variables space. These descriptors were obtained constitutional 
descriptors (number of rings) (nCIC), topological descriptors (Balaban 
centric index) (BAC), 2D autocorrelations (Broto-Moreau autocor-
relation of a topological structure - lag 5/weighted by atomic masses) 
(ATS5m), geometrical descriptors ((3D-Balaban index) (J3D), RDF 
descriptors (Radial Distribution Function - 5.5/weighted by atomic van 
der Waals volumes) (RDF055v), functional group (number of terminal 
C(sp)) (nR#CH/X) and electronic descriptors (polarizability). For this 
in general, the number of components (latent variables) is less than 
the number of independent variables in PLS analysis. The Figure 1b 
shows the plot of predicted versus experimental values for training and 
test sets. The obtained statistic parameters of the GA-PLS model were 
shown in Table 3. The data confirm that higher correlation coefficient 
and lower prediction error have been obtained by PLS in relative to 
MLR and these reveal that PLS method produces more accurate results 
than that of MLR. The PLS model uses higher number of descriptors 
that allow the model to extract better structural information from 
descriptors to result in a lower prediction error.

Nonlinear models 

GA-KPLS analysis
The leave-group-out cross validation (LGO-CV) has been per-

formed. The n selected descriptors in each chromosome were evalu-
ated by fitness function of PLS and KPLS based on the Equation 1. In 
this paper a radial basis kernel function, k(x,y)= exp(||x-y||2 /c), was 
selected as the kernel function with c = mσ2where r is a constant that 
can be determined by considering the process to be predicted (here r 
set to be 1), m is the dimension of the input space and σ2 is the vari-
ance of the data.34 It means that the value of c depends on the system 
under the study. Figure 2a shows the plot of Q2 versus latent variable 
for this model. The 5 descriptors in 2 latent variables space chosen 
by GA-KPLS feature selection methods were contained. These de-
scriptors were obtained constitutional descriptors (number of bonds) 
(nBT), geometrical descriptors (span R) (SPAN), atom-centred frag-
ments ((phenol/enol/carboxyl OH) and electronic descriptors (lowest 
unoccupied molecular orbital (LUMO) and polarizability. The Figure 
2b shows the plot of predicted versus experimental values for training 
and test sets. High correlation coefficient and closeness of slope to 1 
in the GA-KPLS model reveal a satisfactory agreement between the 
predicted and the experimental values. For the constructed model, 
four general statistical parameters were selected to evaluate the 
prediction ability of the model for the RI. Table 3 shows the statisti-
cal parameters for the compounds obtained by applying models to 
training and test sets. The statistical parameters correlation coefficient 
(R2), correlation coefficient LGO-CV (Q2), relative error (REP)% and 
root mean squares error (RMSE) was obtained for proposed models. 
Each of the statistical parameters mentioned above were used for 
assessing the statistical significance of the QSRR model. The data 
presented in Table 3 indicate that the GA-PLS and GA-MLR linear 
model have good statistical quality with low prediction error, while 
the corresponding errors obtained by the GA-KPLS model are lower. 
In comparison with the results obtained by these models suggest that 
GA-KPLS hold promise for applications in choosing of variable for 
L-M ANN systems. This result indicates that the RI of essential oils 
possesses some nonlinear characteristics. 

Description of some models descriptors

In the chromatographic retention of compounds in the nonpolar 
or low polarity stationary phases two important types of interactions 
contribute to the chromatographic retention of the compounds: the 
induction and dispersion forces. The dispersion forces are related to 

steric factors, molecular size and branching, while the induced forces 
are related to the dipolar moment, which should stimulate dipole-
induced dipole interactions. For this reason, constitutional descriptors, 
atom-centred fragments, functional groups and electronic descriptors 
are very important.

Constitutional descriptors are most simple and commonly used 
descriptors, reflecting the molecular composition of a compound 
without any information about its molecular geometry. The most 
common Constitutional descriptors are number of atoms, number of 
bound, absolute and relative numbers of specific atom type, absolute 
and relative numbers of single, double, triple, and aromatic bound, 
number of ring, number of ring divided by the number of atoms or 
bonds, number of benzene ring, number of benzene ring divided by 
the number of atom, molecular weight and average molecular weight.

Electronic descriptors were defined in terms of atomic charges and 
used to describe electronic aspects both of the whole molecule and of 
particular regions, such atoms, bonds, and molecular fragments. This 
descriptor calculated by computational chemistry and therefore can 
be consider among quantum chemical descriptor. The eigenvalues of 
LUMO and HOMO and their energy gap reflect the chemical activity 
of the molecule. LUMO as an electron acceptor represents the ability 
to obtain an electron, while HOMO as an electron donor represents the 
ability to donate an electron. The HOMO energy plays a very important 
role in the nucleophylic behavior and it represents molecular reactivity 
as a nucleophyle. Good nucleophyles are those where the electron 
residue is high lying orbital. The energy of the LUMO is directly 
related to the electron affinity and characterizes the susceptibility of 
the molecule toward attack by nucleophiles. Electron affinity was also 
shown to greatly influence the chemical behaviour of compounds, as 
demonstrated by its inclusion in the QSPR/QSRR.35,36

The geometrical descriptors which use the modeled three-
dimensional coordinates. These descriptors attempt to describe the 
geometrical environments of carbon atoms. They are usually employed 
only in situations in which locked conformations are being studied.37 

Figure 2. Plots of (a) cross validation coefficient obtained by GA-KPLS vs. la-
tent variable and (b) predicted retention index against the experimental values
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Figure 3. Agreement between predicted RI values and experimental values 
by L-M ANN

Topological descriptors are based on a graph representation of 
the molecule. They are numerical quantifiers of molecular topology 
obtained by the application of algebraic operators to matrices repre-
senting molecular graphs and whose values are independent of vertex 
numbering or labeling. They can be sensitive to one or more structural 
features of the molecule such as size, shape, symmetry, branching and 
cyclicity and can also encode chemical information concerning atom 
type and bond multiplicity. Balaban index is a variant of connectivity 
index, represents extended connectivity and is a good descriptor for the 
shape of the molecules and modifying biological process. Nevertheless, 
some of chemists have used this index successfully in developing 
QSPR/QSRR models.

The radial distribution function descriptors are based on the 
distances distribution in the geometrical representation of a molecule 
and constitute a radial distribution function code. Formally, the radial 
distribution function of an ensemble of N atoms can be interpreted as 
the probability distribution of finding an atom in a spherical volume 
of radius r.38

L-M ANN analysis

With the aim of improving the predictive performance of nonli-
near QSRR model, L-M ANN modeling was performed. Descriptors 
of GA-KPLS model were selected as inputs in L-M ANN model. 
The network architecture consisted of five neurons in the input layer 
corresponding to the five mentioned descriptors. The output layer had 
one neuron that predicts the RI. The number of neurons in the hidden 
layer is unknown and needs to be optimized. In addition to the number 
of neurons in the hidden layer, the learning rate, the momentum and 
the number of iterations also should be optimized. In this work, the 
number of neurons in the hidden layer and other parameters except 
the number of iterations were simultaneously optimized. A Matlab 
program was written to change the number of neurons in the hidden 
layer from 2 to 7, the learning rate from 0.001 to 0.1 with a step of 
0.001 and the momentum from 0.1 to 0.99 with a step of 0.01. The 
root mean square errors for training set were calculated for all of the 
possible combination of values for the mentioned variables in cross 
validation. It was realized that the RMSE for the training set are mi-
nimum when three neurons were selected in the hidden layer and the 
learning rate and the momentum values were 0.5 and 0.2, respectively. 
Finally, the number of iterations was optimized with the optimum 
values for the variables. It was realized that after 13 iterations, the 
RMSE for prediction set were minimum. The statistical parameters 
for L-M ANN model in Table 3. Plots of predicted RI versus expe-
rimental RI values by L-M ANN are shown in Figure 3. Obviously, 
there is a close agreement between the experimental and predicted 
RI and the data represent a very low scattering around a straight 
line with respective slope and intercept close to one and zero. The 
closeness of the data to the straight line with a slope equal to 1 shows 
the perfect fit of the data to a nonlinear model. It should be noted 
that the data shown in Figure 3 are the predicted values according to 
leave-group-out cross-validation and a deviation from the regression 
line is expected for some points. The Q2, which is a measure of the 
model fit to the cross validation set, can be calculated as:

 

 (15)

where yi,  yî and y- were respectively the experimental, predicted, and 
mean RI values of the samples. The accuracy of cross validation re-
sults is extensively accepted in the literature considering the Q2 value. 

In this sense, a high value of the statistical characteristic (Q2 > 0.5) 
is considered as proof of the high predictive ability of the model.39 
However, several authors suggest that a high value of Q2 appears to 
be a necessary but not sufficient condition for a model to have a high 
predictive power and consider that the predictive ability of a model can 
only be estimated using a sufficiently large collection of compounds 
that was not used for building the model.40

We believe that applying only LGO-CV is not sufficient to evalu-
ate the predictive ability of a model. Thus we employed a two-step 
validation protocol which contains internal (LGO-CV) and external 
(test set) validation methods. The data set was randomly divided into 
training (calibration and prediction sets) and test sets after sorting 
based on the RI values. The training set consisted of 92 molecules and 
the test set, consisted of 24 molecules. The training set was used for 
model development, while the test set in which its molecules have no 
role in model building was used for evaluating the predictive ability 
of the models for external set. We reported that the retention index of 
this essential oil was mainly controlled by constitutional descriptors, 
functional groups and electronic descriptors.

The statistical parameters obtained by LGO-CV for L-M ANN, 
GA-KPLS and the linear QSRR models are compared in Table 3. In-
spections of the results of this table reveals a higher R2 and Q2 values 
and lower the RE for L-M ANN model for the training and test sets 
compared with their counterparts for GA-KPLS and other models. 
Moreover, the low values of root-mean-square error of prediction for 
the samples in the test set confirm the prediction ability of the resulted 
models for the compounds that were not used in the model-building 
step. In comparison with the plot of other models, the L-M ANN pre-
dicted RI of each one of the training and test sets compound represent 
a uniform and linear distribution. This clearly shows the strength of 
L-M ANN as a nonlinear feature selection method. The key strength of 
L-M ANN is their ability to allow for flexible mapping of the selected 
features by manipulating their functional dependence implicitly. Neural 
network handles both linear and nonlinear relationship without adding 
complexity to the model. This capacity offset the large computing time 
required and complexity of L-M ANN model with respect other models. 

CONCLUSION

The essential oils are widely used in pharmaceutical, cosmetic 
and perfume industry, and for flavouring and preservation of several 
food products. GC and GC-MS is one of the most powerful tools in 
analytical volatile compound (such as essential oils). In this study, an 
accurate QSRR model for estimating the retention index (RI) of es-
sential oils of six Stachys species which obtained by GC and GC-MS 



Quantitative structure–retention relationships analysis of retention index of essential oils 249Vol. 34, No. 2

was developed by employing the two linear models (GA-MLR and 
GA-PLS) and two nonlinear models (GA-KPLS and L-M ANN). The 
most important molecular descriptors selected represent the constitu-
tional descriptors, functional group and electronic descriptors that are 
known to be important in the retention mechanism of essential oils. 
Four models have good predictive capacity and excellent statistical pa-
rameters. A comparison between these models revealed the superiority 
of the GA-KPLS and L-M ANN to other models. It is easy to notice 
that there was a good prospect for the GA-KPLS and L-M ANN ap-
plication in the QSRR modeling. This indicates that the RI of essential 
oils possesses some nonlinear characteristics. In comparison with two 
nonlinear models, the results showed that the L-M ANN model can 
be effectively used to describe the molecular structure characteristic 
of these compounds. It can also be used successfully to estimate the 
RI for new compounds or for other compounds whose experimental 
values are unknown. 
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