

SÍNTESE HIDROTERMAL ASSISTIDA POR MICRO-ONDAS COMO METODOLOGIA SINTÉTICA EFICIENTE PARA OBTENÇÃO DA REDE METALORGÂNICA [Zn(BDC)(H₂O)₂]_n

Kaline A. Wanderley* e Severino Alves Júnior

Departamento de Química Fundamental, Universidade Federal de Pernambuco, Av. Luis Freire, s/n, 50590-470 Recife - PE, Brasil Carlos de Oliveira Paiva-Santos

Departamento de Físico-Química, Instituto de Química, Universidade Estadual Paulista, CP 355, 14801-970 Araraquara - SP, Brasil

Recebido em 28/5/10; aceito em 24/10/10; publicado na web em 26/1/11

MICROWAVE-ASSISTED HYDROTHERMAL SYNTHESIS AS AN EFFICIENT METHOD FOR OBTAINING $[Zn(BDC)(H_2O)_2]_n$ METAL-ORGANIC FRAMEWORK. This work presents the optimization of the microwave-assisted hydrothermal synthesis of $[Zn(BDC)(H_2O)_2]_n$. The reactions were carried out at the fixed temperature of 120 °C for 10, 20, 30 and 40 min. Pure crystalline $[Zn(BDC)(H_2O)_2]_n$ was obtained in high yield (*ca.* 90%) with a reaction time of 10 min. The phase obtained and its purity was confirmed by Rietveld refinement, with a final value for R_{wp}/R_{exp} equal to 1.48. Increased reaction times (20, 30 and 40 min) favored the formation of unwanted by products, resulting in mixtures of several crystalline phases.

Keywords: metal-organic framework (MOF); microwave; Rietveld refinement.

INTRODUÇÃO

As redes metalorgânicas são uma extensa classe de materiais cristalinos que apresentam geralmente um átomo central (íon metálico) coordenado a moléculas orgânicas (ligantes), em que essa unidade metal-ligante se repete formando uma estrutura polimérica de complexos metálicos. Devido à sua grande estabilidade, estruturas cristalinas bem definidas, elevada especificidade na obtenção de diferentes compostos e ampla funcionalidade orgânica devido à escolha do ligante orgânico e íon metálico, esses materiais têm se destacado há alguns anos como uma importante interface entre a ciência de materiais e a química sintética.¹⁻⁴

As propriedades das redes metalorgânicas dependem parcialmente das propriedades dos ligantes orgânicos e da forma com que ele está coordenado ao metal. Assim, novas propriedades podem ser dadas a estes materiais através de alterações prévias do ligante orgânico obtido por diferentes rotas sintéticas. O desenvolvimento de rotas econômicas e seguras para sínteses de materiais metalorgânicos tem sido uma tarefa desafiadora para aplicações práticas. Esses materiais são predominantemente sintetizados sob condições solvotermais ou via cristalização à temperatura ambiente, levando dias ou até semanas para cristalizar.^{5,6} Geralmente, sínteses em fornos de micro-ondas têm uma drástica redução no tempo reacional e sua simplicidade e eficiência energética no processo de aquecimento têm se tornado um fator preponderante na escolha do método sintético.^{7,8}

O método de irradiação de micro-ondas tem sido estudado em sínteses não apenas de moléculas orgânicas,⁹ mas também de materiais inorgânicos, incluindo várias zeólitas,^{10,11} peneiras moleculares e nanopartículas.^{12,13} Devido ao curto tempo gasto durante o processo de cristalização desses materiais, sínteses por micro-ondas provêm métodos sintéticos de materiais porosos com economia de tempo de reação dentro de alguns minutos, oferecendo seletividade de etapas e facilidade no controle da morfologia.¹⁴ Estudos nesta área promovem um amplo campo interdisciplinar que vem crescendo rápido e constantemente, uma vez que as redes metalorgânicas apresentam promissoras aplicações em armazenamento, separação e sorção de gases,^{15,16} catálise,^{17,18} liberação de fármacos,^{19,20} fases estacionárias para cromatografia,^{21,22} entre outras.

Uma série de ligantes têm sido propostos e utilizados na síntese de novos materiais metalorgânicos, dentre os quais, os policarboxilatos aromáticos são particularmente interessantes devido à robustez química e propriedades fotofísicas.²³ Estruturas metalorgânicas contendo zinco e ácido 1,4-benzenodicarboxílico (1,4-H₂BDC) como ligante têm sido extensivamente estudados, sendo os trabalhos de Yaghi e colaboradores os mais relevantes.²⁴⁻²⁷ O ácido 1,4-H₂BDC desempenha papel interessante na construção de redes metalorgânicas, uma vez que pode funcionar como ponte entre os centros metálicos e adotar diversos modos de coordenação, formando estruturas em uma,²⁸ duas²⁹ ou três dimensões (1D, 2D e 3D).³⁰

A rede metalorgânica $[Zn(BDC)(H_2O)_2]_n$, contendo o 1,4-benzenodicarboxilato (BDC) em sua estrutura, foi obtida pela primeira vez por Guilera e colaboradores, em 1999, através do método de precipitação por 24 h.²⁸ Em 2001, Edgar e colaboradores obtiveram o mesmo material através de transformações sólido-estruturais por tratamento térmico e adição de solventes.³¹ Em 2002, Li-Na Zhu e colaboradores obtiveram o $[Zn(BDC)(H_2O)_2]_n$ através da reação entre sal de BDC e zinco em metanol por 30 min, obtendo cristais com 80% de rendimento.³² Entretanto, em nenhum dos referidos trabalhos os autores relatam a obtenção de uma fase cristalina pura.

Com a finalidade de se obter uma rede metalorgânica por uma metodologia mais simples e reprodutível, neste trabalho foi otimizada a síntese do $[Zn(BDC)(H_2O)_2]_n$ já conhecida na literatura por uma rota sintética diferente do que foi reportado, através de síntese hidrotermal assistida por micro-ondas, uma metodologia mais rápida, fácil, eficiente e com maior reprodutibilidade. Através do método de irradiação de micro-ondas é possível sintetizar materiais em curto espaço de tempo, controlar a distribuição de tamanho das partículas, além da facilidade no controle dos parâmetros experimentais (temperatura, potência, pressão, tempo reacional).

PARTE EXPERIMENTAL

Materiais e reagentes

Ácido 1,4-benzenodicarboxílico (1,4- H_2BDC) fornecido pela Terphane Ltda., NaOH anidro (97%) adquirido da Dinâmica Química Ltda. e Zn(NO₃)₂·6H₂O (98%) fornecido pela Sigma-Aldrich foram usados sem purificação prévia para a síntese da rede metalorgânica.

Síntese do Na₂BDC e da rede metalorgânica [Zn(BDC)(H₂O)₂]_n

Na₂BDC

Uma quantidade conhecida de NaOH (20 mmol; 0,8 g) foi dissolvida em H_2O (10 mL) e adicionada lentamente ao 1,4- H_2BDC (10 mmol; 1,66 g) em H_2O (aproximadamente 50 mL). Após a dissolução da mistura de NaOH e 1,4- H_2BDC em H_2O sob agitação, evaporou-se cerca de um terço do volume total de água (20 mL) e adicionou-se 20 mL de etanol até precipitação do Na₂BDC. O precipitado (Equação 1) foi filtrado e secado à temperatura ambiente, obtendo-se um rendimento de aproximadamente 88% através de cálculo estequiométrico.

$$\stackrel{\text{HO}}{\longrightarrow} \stackrel{\text{O}}{\longrightarrow} \stackrel{\text{O}}{$$

$[Zn(BDC)(H_2O)_2]_n$

Reatores de 10 mL IntelliVent para reações em micro-ondas foram preenchidos com misturas de Na₂BDC (0,25 mmol; 0,053 g), Zn(NO₃)₂·6H₂O (0,5 mmol; 0,148 g) e H₂O (4 mL); cada mistura foi agitada por 15 min para garantir a homogeneização do sistema e os reatores colocados individualmente dentro de um micro-ondas CEM *Focused Microwave*TM *Synthesis System Discover S-Class* por diferentes tempos para cada reator (10, 20, 30 e 40 min) e a uma mesma temperatura de 120 °C sob constante agitação.

A potência máxima do micro-ondas foi 60 W para garantir que a temperatura de 120 °C seria atingida nos tempos de reação desejados (10, 20, 30 e 40 min) e a pressão variando em função da potência, de acordo com o equipamento. A temperatura e a pressão foram controladas dentro do reator e o fluxo constante de ar (cerca de 10 bar de pressão) garantiu um controle rigoroso das condições das sínteses.

Após a reação hidrotermal assistida por micro-ondas, os materiais foram resfriados à temperatura ambiente, filtrados sob vácuo e lavados com água e acetona, respectivamente. Os produtos foram coletados e secos ao ar. A fase pura (Equação 2) de coloração branca foi obtida apenas para a síntese assistida por 10 min (0,061 g, 90% de rendimento em relação ao ligante).

$$nNa_2BDC + nZn(NO_3)_2 \cdot 6H_2O \longrightarrow [Zn(BDC)(H_2O)_2]_n + 2nHNO_3 + 2nNaOH + 2nH_2O$$
(2)

Análise elementar

Análises elementares de carbono, nitrogênio, hidrogênio e enxofre (CNHS) foram realizadas em um analisador elementar CE Instruments, modelo EA1110.

Microscopia eletrônica de varredura

As imagens de microscopia eletrônica de varredura foram coletadas por deposição em alumínio revestido com carbono, usando um microscópio eletrônico de varredura SU-70 trabalhando a 15 kV.

Difração de raios X por policristais

As medidas de difração de raios X dos materiais sintetizados com 10, 20, 30 e 40 min de irradiação de micro-ondas foram realizadas à temperatura ambiente em um difratômetro Philips X 'Pert MPD, ânodo de cobre ($\lambda_{k\alpha l} = 1,540598$ Å e $\lambda_{k\alpha 2} = 1,544426$ Å), potência no tubo de 2 kW (40 kV de radiação X, 50 mA), equipado com um detector X'Celerator e configuração óptica Bragg-Bretano. A intensidade foi coletada em modo de varredura contínua com 20 entre 5 e 50° e intensidades registradas a cada $\Delta 20 = 0,04^\circ$.

A rede metalorgânica $[Zn(BDC)(H_2O)_2]_n$ foi caracterizada por difração de raios X de pós, as medidas foram realizadas à temperatura ambiente em um difratômetro Rigaku RINT2000 com ânodo rotatório de cobre ($\lambda_{k\alpha 1} = 1,5404$ Å, $\lambda_{k\alpha 2} = 1,5444$ Å, $I_{\alpha 2}/I_{\alpha 1} = 0,5$). A intensidade foi coletada através do método passo a passo num intervalo de 20 entre 10 e 50°, com $\Delta 20$ de 0,02°, fenda Soller de 2,5° de divergência, fenda de espalhamento de 0,5° e fenda de recepção de 0,3 mm. Para o refinamento pelo método de Rietveld³³ foi usado o programa GSAS³⁴ e o modelo da estrutura cristalina descrito por Guilera e colaboradores.²⁸ A orientação preferencial foi corrigida pelo modelo dos esféricos harmônicos descrito por Jarvinen.³⁵ Para o ajuste do perfil dos picos de difração foi usada a função de Thompson-Cox-Hastings³⁶ modificada por Young e Desai.³⁷

Espectroscopia de absorção na região do infravermelho

As análises qualitativa e quantitativa dos modos vibracionais na região do infravermelho de 4000 a 400 cm⁻¹ do 1,4-H₂BDC, Na₂BDC e $[Zn(BDC)(H_2O)_2]_n$ foram realizadas por infravermelho com transformada de Fourier usando um espectrômetro Bruker, modelo I'FS66.

Análise termogravimétrica

Os dados termogravimétricos foram obtidos a partir de 3,0 mg de cada amostra utilizando uma termobalança Shimadzu modelo TGA 50, em uma faixa de temperatura de 25 a 800 °C, usando cadinho de platina sob atmosfera de nitrogênio (50 mL/min) e taxa de aquecimento de 10 °C/min.

RESULTADOS E DISCUSSÃO

As análises elementares do Na₂BDC estavam bem de acordo com os valores calculados, podendo ser utilizado na síntese do [Zn(BDC)(H₂O)₂]_n. Análise elementar calculada para C₈H₄O₄Na₂ (%): C 45,69; H 1,92, encontrada (%): C 45,32; H 1,80. Os padrões de difração de raios X para os materiais sintetizados com 10, 20, 30 e 40 min de irradiação de micro-ondas (Figura 1a) foram medidos a fim de se confirmar a obtenção unicamente da fase pura da rede metalorgânica [Zn(BDC)(H₂O)₂]_n. Os resultados mostram que. com o aumento gradual do tempo reacional, se observa a formação de uma mistura de diferentes fases cristalinas, gerando um grau de impureza não desejado.

A obtenção do $[Zn(BDC)(H_2O)_2]_n$ pôde ser confirmada através de refinamento de Rietveld apenas para a síntese realizada durante 10 min (Figura 1b). Os fatores de confiabilidade^{34,38} R_{wp} e χ^2 no final do refinamento foram de 13,20% e 2,202, respectivamente. O valor esperado³⁴ de R_{exp} para esse refinamento ($R_{exp} = R_{wp}$. $\sqrt{x^2}$) é 8,9%. A razão R_{wp}/R_{exp} = 1,48 mostra que os valores obtidos dos índices indicam que o refinamento foi realizado adequadamente. Nota-se também na Figura 1b, que todos os picos foram ajustados por essa estrutura cristalina, indicando que apenas essa fase está presente na amostra. Os parâmetros de rede e dados de refinamento de Rietveld para o [Zn(BDC)(H₂O)₂]_n estão dispostos na Tabela 1.

Figura 1. (a) Padrões de raios X para sínteses em 10, 2, 30 e 40 min por micro-ondas; (b) refinamento de Rietveld para a síntese do $[Zn(BDC)(H_2O)_2]_n$ em 10 min e imagem de microscopia eletrônica de varredura ilustrando a morfologia do material

Tabela 1	 Parâmetros 	de rede e	dados	do refin	amento	de R	Rietveld	para	0
[Zn(BD0	$C)(H_2O)_2]_n$ end	contrados j	pelo GS	AS					

Fórmula empírica	$C_8H_8O_6Zn$					
Peso molecular	265,51					
Sistema cristalino	Monoclínico					
Grupo espacial	C2/c					
а	14,9783(4) Å					
b	5,0247 (2) Å					
С	12,0811 (3) Å					
β	103,823 (2)° 882,92 (4) Å					
Volume						
Z	4					
Fatores de confiabilidade do refinamento de Rietveld						
\mathbf{R}_{p}	9,11%					
R_{wp}	13,20%					
$R(F^2)$	6,73%					
χ ²	2,202					

A metodologia sintética da rede metalorgânica $[Zn(BDC)(H_2O)_2]_n$, reportada na literatura,^{28,31,32} foi modificada com o propósito de aumentar a cristalinidade total, bem como tornar a síntese do material mais rápida, prática e eficiente. A reação hidrotermal assistida por micro-ondas na razão molar 1:2 ligante-metal forneceu excelentes materiais com elevado rendimento. Análises elementares de CNHS estão bem de acordo com os respectivos valores calculados. Análise elementar calculada para $C_8H_8O_6Zn$ (%): C 36,17; H 3,04, encontrada (%): C 36,01; H 3,12. Monocristais com formas largas e bem definidas (tamanho do cristal na faixa de 50 a 100 µm) puderam ser isolados e revelados através de imagens de MEV (Figura 1b).

O [Zn(BDC)(H₂O)₂]_n constituído por centros Zn²⁺ ligados a dois resíduos de BDC pelos átomos de oxigênios O(1) e O(1)[#] forma uma estrutura linear em 1D. A esfera de coordenação do cátion metálico é completada por duas moléculas de água, formando um poliedro descrito por um tetraedro distorcido. A Figura 2 mostra uma projeção do [Zn(BDC)(H₂O)₂]_n e o poliedro de coordenação do metal. As distâncias de ligação são Zn–O(1) 2,005(15) Å e Zn–O(2) 2,550(16) Å. Este fato sugere uma interação significativa entre o Zn²⁺ e o átomo de oxigênio O(2), porém não caracteriza a formação de uma ligação coordenada, uma vez que as distâncias de ligação M–O em ligantes carboxilatos atuando como quelatos são aproximadamente as mesmas.^{39,40} Desta forma, cada ligante BDC adota o modo de coordenação bis-monodentado (*syn-anti*) conectando dois Zn²⁺ adjacentes, formando uma cadeia 1D em *zig-zag* ao logo do plano cristalográfico *ac.*²⁸

Figura 2. (a) Unidade assimétrica do $[Zn(BDC)(H_2O)_2]_n$; (b) poliedro de coordenação do cátion Zn^{2+} . A operação de simetria usada para gerar os átomos equivalentes: ${}^{\#}0,5 + x, 1,5 - y, 0,5 + z$

A estrutura supramolecular do cristal (Figura 3) é formada pela conexão das cadeias poliméricas 1D por empacotamentos π - π e por uma série de ligações de hidrogênio presente na estrutura. Os anéis aromáticos do ligante BDC das cadeias 1D emparelham-se perpendicularmente ao longo do plano cristalográfico *b* com distância interlamelar de 5,0 Å. As séries de ligações de hidrogênio envolvem os átomos de oxigênio das moléculas de água coordenadas ao metal e os átomos de oxigênio O(2) simetricamente relacionados, oriundos dos resíduos de BDC. Para melhor visualização da estrutura supramolecular do [Zn(BDC)(H₂O)₂]_{*n*}, consultar o material suplementar (Figura 1S).

Os espectros de IV obtidos estão dispostos na Figura 4. O espectro de infravermelho do 1,4-H₂BDC apresenta uma deformação axial de ν (O–H) larga de 3100 a 2550 cm⁻¹, aproximadamente. Apresenta também o sinal característico da carbonila, deformação axial de ν (C=O) carboxílica do dímero, próximo a 1685 cm⁻¹. Apresenta deformação angular no plano de ν (C–O–H) em 1428 cm⁻¹ e a deformação axial de ν (C–O), dímero, em 1283 cm⁻¹.

Figura 3. Estrutura supramolecular do $[Zn(BDC)(H_2O)_2]_n$, destacando os empacotamentos π - π (poliedro cinza) e ligações de hidrogênio (região ampliada em pontilhado)

Figura 4. (a) Espectros de infravermelho do $1,4-H_2BDC$ (preto) e Na_2BDC (pontilhado); (b) espectros de infravermelho do $1,4-H_2BDC$ (preto) e do $[Zn(BDC)(H_2O)_2]_n$ (pontilhado)

O modo vibracional do estiramento v(O-H) claramente desaparece quando o Na₂BDC é formado (Figura 4a). O 1,4-H₂BDC tem absorções v(O-H) bem definidas centradas em 3103, 3066, 2978, 2816, 2661 e 2546 cm⁻¹, devido às interações intermoleculares das ligações de hidrogênio.⁴¹ Tem também uma forte banda de absorção em 1682 cm⁻¹ decorrente de v(C=O) no qual, sob coordenação, desloca para 1562 cm⁻¹ para o Na₂BDC. Um comportamento esperado, visto que a ligação entre o ligante orgânico e o metal faz com que haja uma diminuição na força da ligação da carbonila, deslocando o estiramento para uma menor energia.

Quando o [Zn(BDC)(H₂O)₂], é formado, o modo vibracional do estiramento v(O-H) volta a surgir devido à presença das águas coordenadas na estrutura; entretanto, sob coordenação o estiramento v(O-H) é deslocado para altos números de onda com máximo centrado em 3240 cm⁻¹ comparado às absorções v(O-H) do 1,4-H₂BDC (Figura 4b). A forte banda de absorção do v(C=O) do ligante livre, assim como para o Na₂BDC, desloca para uma menor energia em 1577 cm⁻¹ para o [Zn(BDC)(H₂O)₂], ³² Resultados similares são reportados para outros complexos contendo 1,4-H₂BDC e zinco.⁴² Os espectros de IV tanto do Na₂BDC quanto do [Zn(BDC)(H₂O)₂], têm marcadamente distintas regiões espectrais para os modos vibracionais simétrico de $v_{0}(CO_{2})$ e assimétrico de $v_{0}(CO_{2})$.³² A diferença entre as frequências dos estiramentos $v_{0}(CO_{2}) = v_{0}(CO_{2})$, correspondendo ao valor Δ , como proposto por Deacon e Phillips,⁴³ pode indicar o modo como o grupo carboxílico dos compostos podem estar coordenados. Para o 1,4-H₂BDC o valor é Δ = 258, para o Na₂BDC Δ = 168 e para o $[Zn(BDC)(H_2O)_2]_n \Delta = 195$. Como o valor de Δ do sal de BDC é menor que o do ligante livre, o composto deve estar coordenado pelo tipo quelato, assim como seria esperado para o polímero de coordenação.44 Na descrição da estrutura cristalina foi visto que o [Zn(BDC)(H₂O)₂] " está coordenado pelo modo monodentado, podendo descrever um modo de coordenação semiquelato, devido à presença da ligação Zn-O(2) livre para fortes interações de hidrogênio (Figura 2), este fato poderia justificar a diferença entre os valores de Δ do Na₂BDC e do $[Zn(BDC)(H_2O)_2]_n$.

A Figura 5 ilustra a curva termogravimétrica do $[Zn(BDC)(H_2O)_2]_n$. Há marcadamente três perdas de massa distintas. As perdas de massa podem ser interpretadas como: liberação de moléculas de água coordenadas em dois estágios consecutivos, no qual a primeira etapa liberando, em média, uma molécula de água (perda de 6,8%) entre 140 e 178 °C e a segunda etapa liberando a outra molécula de água remanescente ligada ao metal zinco (perda também de 6,8%) entre 179 e 206 °C; liberação do ligante orgânico em um único estágio, correspondendo à quebra, descoordenação do 1,4-H₂BDC e desintegração da estrutura entre 207 e 600 °C (perda de 55,8%), levando somente ao óxido metálico. Em alguns casos esta liberação pode ocorrer em duas etapas consecutivas, sendo a primeira correspondente à quebra e descoordenação do ligante orgânico e a segunda, à desintegração da estrutura.⁴⁵

Figura 5. Curva termogravimétrica do $[Zn(BDC)(H_2O)_2]_n$

Moléculas de água coordenadas normalmente são liberadas entre 100 e 200 °C, assim como a desintegração do ligante ocorre entre 400 e 600 °C. Dessa forma, os dados termogravimétricos estão de acordo com o que seria esperado para o [Zn(BDC)(H₂O)₂]_n, podendo-se propor o mecanismo (Equação 3) para as perdas de massa da molécula.

$$[ZnC_{8}H_{4}O_{4}(H_{2}O)_{2}]_{n} \xrightarrow{-2nH_{2}O} [ZnC_{8}H_{4}O_{4}]_{n} \xrightarrow{-nC_{8}H_{4}O_{3}} Z70 - 600^{\circ}C \qquad (3)$$

CONCLUSÃO

A rede metalorgânica $[Zn(BDC)(H_2O)_2]_n$, conhecida na literatura, foi obtida por um procedimento sintético rápido, eficiente e reprodutível. Fatores de confiabilidade obtidos através do refinamento de Rietveld confirmaram a obtenção do material pela síntese assistida por micro-ondas durante 10 min de irradiação, fornecendo excelentes cristais com 90% de rendimento. Análises elementares, espectroscopia por infravermelho e análise termogravimétrica puderam ser eficientemente correlacionadas aos dados cristalográficos da estrutura linear em *zig-zag* da rede metalorgânica. As interações dos empacotamentos π - π da cadeia em 1D sugerem aplicações interessantes à estrutura.

MATERIAL SUPLEMENTAR

A estrutura supramolecular do $[Zn(BDC)(H_2O)_2]_n$ em cores encontra-se disponível gratuitamente em http://quimicanova.sbq.org. br/, na forma de arquivo pdf.

AGRADECIMENTOS

À técnica E. de F. V. Barros da Central Analítica e ao Prof. E. H. L. Falcão do Departamento de Química Fundamental (UFPE), ao pesquisador F. A. A. Paz e sua aluna P. Silva da Universidade de Aveiro, Portugal. Ao CNPq, CAPES, RENAMI e INCT-INAMI pelo suporte financeiro.

REFERÊNCIAS

- 1. Rowsell, J. L. C.; Yaghi, O. M.; *Microporous Mesoporous Mater.* 2004, 73, 3.
- 2. Janiak, C;. Dalton Trans. 2003, 2781.
- Papaefstathiou, G. S.; MacGillivray, L. R.; Coord. Chem. Rev. 2003, 246, 169.
- Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J.; *Nature* 2003, 423, 705.
- Rodrigues, M. O.; Brito-Silva, A. M.; Alves, S.; De Simone, C. A.; Araujo, A. A. S.; de Carvalho, P. H. V.; Santos, S. C. G.; Aragão, K. A. S.; Freire, R. O.; Mesquita, M. E.; *Quim. Nova* 2009, *32*, 286.
- Rodrigues, M. O.; Paz, F. A.; Freire, R. O.; de Sa, G. F.; Galembeck, A.; Montenegro, M. C.; Araujo, A. N.; Alves, S.; *J. Phys. Chem. B* 2009, *113*, 12181.
- 7. Lin, Z.; Wragg, D. S.; Morris, R. E.; Chem. Commun. 2006, 2021.
- Silva, P. C.; Valente, A. A.; Rocha, J. O.; Almeida Paz, F. A.; Cryst. Growth Des. 2010, 10, 2025.
- Lidström, P.; Tierney, J.; Wathey, B.; Westman, J.; *Tetrahedron* 2001, 57, 9225.
- Inada, M.; Tsujimoto, H.; Eguchi, Y.; Enomoto, N.; Hojo, J.; Fuel 2005, 84, 1482.
- 11. Xu, X.; Bao, Y.; Song, C.; Yang, W.; Liu, J.; Lin, L.; *Microporous Mesoporous Mater.* 2004, 75, 173.
- 12. Ni, Z.; Masel, R. I.; J. Am. Chem. Soc. 2006, 128, 12394.
- Choi, J. Y.; Kim, J.; Jhung, S. H.; Kim, H.-K.; Chang, J.-S.; Chae, H. K.; Bull. Korean Chem. Soc. 2006, 27, 1523.

- Park, S.-E.; Chang, J.-S.; Hwang, Y. K.; Kim, D. S.; Jhung, S. H.; Hwang, J. S.; *Catal. Surv. Asia* **2004**, *8*, 91.
- 15. Collins, D. J.; Zhou, H. C.; J. Mater. Chem. 2007, 17, 3154.
- Bastin, L.; Barcia, P. S.; Hurtado, E. J.; Silva, J. A. C.; Rodrigues, A. E.; Chen, B.; J. Phys. Chem. C 2008, 112, 1575.
- Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastre, J.; J. Mater. Chem. 2006, 16, 626.
- Horike, S.; Dinca, M.; Tamaki, K.; Long, J. R.; J. Am. Chem. Soc. 2008, 130, 5854.
- Horcajada, P.; Serre, C.; Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Ferey, G.; Angew. Chem., Int. Ed. 2006, 45, 5974.
- Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N. A.; Balas, F.; Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Ferey, G.; *J. Am. Chem. Soc.* 2008, *130*, 6774.
- Chen, B. L.; Liang, C. D.; Yang, J.; Contreras, D. S.; Clancy, Y. L.; Lobkovsky, E. B.; Yaghi, O. M.; Dai, S.; *Angew. Chem., Int. Ed.* 2006, 45, 1390.
- 22. Zhou, Y. Y.; Yan, X. P.; Kim, K. N.; Wang, S. W.; Liu, M. G.; J. Chromatogr., A 2006, 1116, 172.
- Wang, F. Q.; Zheng, X. J.; Wan, Y. H.; Sun, C. Y.; Wang, Z. M.; Wang, K. Z.; Jin, L. P.; *Inorg. Chem.* 2007, 46, 2956.
- Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M.; *Tetrahedron* 2008, 64, 8553.
- Britt, D.; Tranchemontagne, D.; Yaghi, O. M.; Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 11623.
- Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M.; *Science* 2002, 295, 469.
- Eddaoudi, M.; Li, H. L.; Yaghi, O. M.; J. Am. Chem. Soc. 2000, 122, 1391.
- 28. Guilera, G.; Steed, J. W.; Chem. Commun. 1999, 1563.
- Li, Z. Q.; Qiu, L. G.; Wang, W.; Xu, T.; Wu, Y.; Jiang, X.; *Inorg. Chem. Commun.* 2008, 11, 1375.
- Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M.; *Nature* 1999, 402, 276.
- Edgar, M.; Mitchell, R.; Slawin, A. M. Z.; Lightfoot, P.; Wright, P. A.; Chem.-Eur. J. 2001, 7, 5168.
- Zhu, L. N.; Zhang, L. Z.; Wang, W. Z.; Liao, D. Z.; Cheng, P.; Jiang, Z. H.; Yan, S. P.; *Inorg. Chem. Commun.* 2002, *5*, 1017.
- 33. Rietveld, H. M.; J. Appl. Crystallogr. 1969, 2, 65.
- Larson, A. C.; von Dreele, R. B.; General Structure Analysis System (GSAS), Los Alamos National Laboratory, 2004.
- 35. Jarvinen, M.; J. Appl. Crystallogr. 1993, 26, 525.
- Thompson, P.; Cox, D. E.; Hastings, J. B.; J. Appl. Crystallogr. 1987, 20, 79.
- 37. Young, R. A.; Desai, P.; Arch. Nauki Mater. 1989, 10, 71.
- 38. Young, R. A.; Wiles, D. B.; J. Appl. Crystallogr. 1982, 15, 430.
- Zheng, S. L.; Yang, J. H.; Yu, X. L.; Chen, X. M.; Wong, W. T.; *Inorg. Chem.* 2004, 43, 830.
- Haitao, X.; Jiahe, L.; Jing, Z.; Huizhong, K.; Ruji, W.; Li, Y.; J. Mol. Struct. 2004, 689, 177.
- Tellez, C. A.; Hollauer, E.; Mondragon, M. A.; Castano, V. M.; Spectrochim. Acta, Part A 2001, 57, 993.
- Ghermani, N. E.; Morgant, G.; d'Angelo, J.; Desmaele, D.; Fraisse, B.; Bonhomme, F.; Dichi, E.; Sgahier, M.; *Polyhedron* 2007, 26, 2880.
- 43. Deacon, G. B.; Phillips, R. J.; Coord. Chem. Rev. 1980, 33, 227.
- 44. Nakamoto, K.; Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley: New Jersey, 2009.
- Alaerts, L.; Maes, M.; Jacobs, P. A.; Denayer, J. F. M.; De Vos, D. E.; Phys. Chem. Chem. Phys 2008, 10, 2979.