

ADSORÇÃO DE ARSÊNIO(V) PELO COMPÓSITO MAGNÉTICO HIDROTALCITA - ÓXIDO DE FERRO

Thiago Vinícius Toledo, Carlos Roberto Bellato*, Rafael Henrique do Rosário e José de Oliveira Marques Neto Departamento de Química, Universidade Federal de Viçosa, 36571-000 Viçosa – MG, Brasil

Recebido em 18/3/10; aceito em 8/11/10; publicado na web em 18/2/11

ADSORPTION OF ARSENIC(V) BY THE MAGNETIC HYDROTALCITE - IRON OXIDE COMPOSITE. In this work, hydrotalcite, a layered double hydroxide, had its adsorption and ion exchange properties combined with the magnetic properties of iron oxide to produce a magnetic adsorbent, HT-Fe. The removal of As(V) by a HT-Fe adsorbent was evaluated under various conditions. The Kinetic process was well described by a pseudo-second order rate model. The maximum adsorption capacity, calculated with the Langmuir model showed to be dependent on pH, reaching values of 24.09, 10.19 and 7.44 mg g⁻¹, respectively, for pH values of 4.0, 7.0 and 9.0. The inhibition by competition of anions is dependent on the type of ionic species.

Keywords: hidrotalcite - iron oxide composite; arsenate; adsorption.

INTRODUÇÃO

Hidróxidos duplos lamelares (HDLs) são hidróxidos metálicos mistos que têm fórmula geral expressa por $[M_{1-x}^{2+}M_x^{3+}(OH)_2]^{x+}A_{x/n}^n$ mH₂O), onde M²⁺ e M³⁺ representam, respectivamente, cátions metálicos di e trivalentes, Aⁿ⁻ um ânion de carga n, x a razão entre os cátions di e trivalentes e m o número de moléculas de água. A estrutura cristalina destes compostos consiste em camadas carregadas positivamente $[M_{1-x}^{2+}M_x^{3+}(OH)_2]^{x+}$, semelhantes à estrutura lamelar da brucita (Mg(OH)₂), e uma região interlamelar negativa composta de ânions e moléculas de água, Aⁿ⁻_{x/n} mH₂O.¹ A classe mais famosa destes compostos é a de hidrotalcitas, que apresentam a fórmula geral $[Mg_{1-x}^{2+}A_x^{3+}(OH)_2]^{x+}[A_{x/n}^{n-}mH_2O]^{x-}$, onde x pode ter o valor entre 0,2 e 0,33. Os ânions (Aⁿ⁻_x) e as moléculas de água interlamelares podem ser trocados por outros ânions, o que, em teoria, faz das hidrotalcitas bons trocadores aniônicos.²

Nos últimos anos muitos estudos têm sido dedicados à investigação da habilidade dos hidróxidos duplos lamelares em remover oxiânions nocivos, tais como arsenato, cromato, etc., de águas contaminadas, por meio da adsorção de superfície e da troca aniônica destes pelos ânions interlamelares da estrutura do HDL.¹

O arsênio é um elemento altamente tóxico, presente principalmente em águas de abastecimento e alimentos marinhos, e sua contaminação pode causar dermatites, câncer de pele, efeitos neurológicos, doenças do coração e cânceres internos.³ Diante dos riscos evidentes de acumulação e dos efeitos toxicológicos crônicos do As em água potável, a OMS modificou provisoriamente em 1993 o valor máximo permissível de 50 para 10 μ g L⁻¹ de As em água destinada ao consumo humano.⁴ No Brasil, a portaria do Ministério da Saúde nº. 518, de 25/3/2004, que normaliza a qualidade de água para consumo humano, também tem o valor de 10 μ g L⁻¹ de As como o máximo permitido.⁵

O arsênio ocorre em águas sob várias formas diferentes dependendo do pH e do potencial redox (Eh) do meio, sendo as espécies inorgânicas, arsenito e arsenato, mais tóxicas que as orgânicas. Arsenato (As(V)) e arsenito (As(III)) são formas primárias de arsênio encontradas em águas naturais, sendo o As(V) mais estável termodinamicamente em águas de superfícies oxigenadas e o As(III) em águas subterrâneas.^{6,7} Tais espécies existem como oxiânions, sendo que a espécie dominante do arsenito é a espécie neutra H_3AsO_3 (pK₁ = 9,22) e para o arsenato são as espécies negativas $HAsO_4^{2^{-2}}$ (pK₁ = 2,20) e $H_2AsO_4^{-1}$ (pK₂ = 6,97) quando o pH está em uma faixa intermediária entre 3 e 9. Ainda para o As(V), destacam-se como espécies predominantes em condições extremas de acidez e alcalinidade H_3AsO_4 e AsO₄³⁻³, respectivamente.^{6,8,9}

A remoção de arsênio de águas é um assunto importante devido a sua toxidade e tem chamado a atenção nos últimos anos.¹⁰ Diversas técnicas estão sendo desenvolvidas para remover o arsênio da água e, neste contexto, o processo de adsorção em fase sólida aparece como um método promissor.³ Dentre os materiais utilizados na adsorção de arsênio em fase sólida estão, por exemplo, zeólitas,¹¹ pasta de cimento Portland,¹² alumina ativada,¹³ oxisol,¹⁴ lama,¹⁵ quitina e quitosana,^{16,17} hidrotalcita.¹⁸ Diversos materiais contendo ferro vêm sendo mais efetivamente empregados como adsorventes de compostos de arsênio por apresentarem vantagens, principalmente devidas à formação do complexo Fe:As muito estável.¹⁹⁻²¹

Neste trabalho, as propriedades de troca aniônica e adsorção da hidrotalcita foram combinadas com as propriedades magnéticas do óxido de ferro para produzir um adsorvente magnético, a hidrotalcitaóxido de ferro (HT-Fe).22 Este adsorvente apresenta como principal vantagem o fato de ser facilmente removido do meio, após a adsorção dos contaminantes, por um processo de separação magnética e proporcionar um aumento na adsorção de arsenato, devido à presença do óxido de ferro. Assim, o objetivo deste trabalho foi avaliar a eficiência de adsorção de As(V) pelo compósito HT-Fe. Foram avaliados os efeitos de vários parâmetros sobre a capacidade de adsorção de As(V), entre os quais concentração, pH, tempo de contato e competição de ânions. Também foram estudadas a dessorção do As(V) da HT-Fe. Para avaliar o aumento na capacidade de adsorção da HT pela incorporação do óxido de ferro, os experimentos foram repetidos, somente com a HT, mantendo-se as mesmas condições experimentais. Estudos também foram conduzidos somente com o óxido de ferro.

PARTE EXPERIMENTAL

Síntese da hidrotalcita (HT) e da hidrotalcita-óxido de ferro (HT-Fe)

pitação a pH variável, na razão molar Al:(Al + Mg) igual a 0,33, em presença de NaOH e Na₂CO₃. Para isto, uma solução contendo 0,101 mols de Mg(NO₃)₂.6H₂O e 0,0510 mols de Al(NO₃)₃.9H₂O, diluídos em 100 mL de água purificada (Milli-Q, Millipore), foi adicionada lentamente por meio de uma bomba peristáltica (Gilson®, modelo Minipuls 3) a uma velocidade de 60 mL h⁻¹ a 100 mL de uma solução básica contendo 0,361 mols de NaOH e 0,168 mols de Na₂CO₃, sob agitação.²³ A mistura reacional foi mantida à temperatura ambiente sob agitação, por mais 140 min após a adição ser completada. Após este período, o gel formado permaneceu em repouso em estufa por 18 h a 60 °C. Posteriormente, fez-se a suspensão do material obtido em água purificada realizando vários ciclos de filtração e lavagem até pH = 7,0, obtendo-se um material sólido, que após ser mantido em estufa a 80 °C por 12 h, foi macerado e acondicionado em dessecador.²²

Para produzir o HT-Fe, a síntese descrita acima foi ajustada de modo a se obter uma razão em massa de HT:óxido de ferro de 1:1. Desta forma, preparou-se uma suspensão de hidrotalcita (2,0 g) em 1,6 L de uma solução de FeCl₃.6H₂O (2,0 g) e FeSO₄.7H₂O (4,8 g) a 70 °C. Em seguida, adicionou-se 120 mL de uma solução de NaOH 5 mol L⁻¹ para que ocorresse a precipitação do óxido de ferro. Da mesma forma, o óxido de ferro pode ser sintetizado independentemente. Realizaram-se vários ciclos de filtração e lavagem do sólido com água purificada até pH igual a 7,0 e, em seguida, o material foi seco em estufa a 70 °C por 18 h. Após o preparo, a HT-Fe mostrou propriedades magnéticas quando testada com um imã de 0,3 T, sendo que todo material foi atraído pelo imã.

Caracterização dos materiais

Os materiais preparados foram caracterizados por técnicas complementares: difratometria de raios-X, microscopia eletrônica de varredura e espectroscopia no infravermelho. As análises de difração de raios-X foram realizadas em difratômetro X-ray Diffraction System modelo X' Pert PRO (PANalytical) utilizando filtro de Ni e radiação Co-k α (λ = 1,78890 Å) e variação angular de 10-80° (2 θ). Para as análises de microscopia eletrônica de varredura as amostras foram previamente recobertas com um filme de ouro em metalizador (Sputter coating attachment), modelo SCA 010 e analisadas, em seguida, em um microscópio marca LEO, modelo 1430 VP. A análise de espectroscopia no infravermelho foi realizada em um espectrofotômetro infravermelho Perkin Elmer - FT-IR 1000 na região de 400 a 4000 cm-1. Para a obtenção de pastilhas das amostras, cerca de 1,50 mg das mesmas foram misturadas a 100 mg de KBr previamente seco em estufa. Após homogeneização, a mistura foi prensada em prensa hidráulica para se obter pastilhas de 0,200 mm de espessura.

Quantificação do As(V)

O arsênio foi determinado com um espectrômetro de absorção atômica, marca Varian, modelo SpectrAA-200, equipado com um gerador de hidretos, modelo VGA77 (EAA-GH). As determinações foram realizadas com lâmpada de catodo oco para arsênio no comprimento de onda de 193,7 nm, largura de fenda de 0,5 nm e corrente da lâmpada de 10 mA. A chama de ar-acetileno foi usada para aquecimento da cela de hidretos e nitrogênio como gás carreador.¹⁰ Determinou-se o As total pela redução do As(V) através da adição de KI 50% (m/v) e HCl 6 mol L⁻¹, obtendo nas soluções de leituras concentrações de 10% (m/v) e 1 mol L⁻¹ para os dois reagentes, respectivamente. Todas as análises foram realizadas em duplicata.

Adsorção de As(V)

Efeito do pH

O efeito do pH no processo de adsorção foi feito em batelada, a

partir de 20 mL de soluções de arsenato de sódio com concentrações de 75 mg L⁻¹ e 100 mg do adsorvente (HT-Fe ou HT), sob agitação constante, num sistema termostatizado, 25 ± 0.5 °C, por um período de 24 h. Os valores de pH das soluções foram ajustados, com NaOH ou H₂SO₄, para valores na faixa de 2 a 10. Após o tempo de contato, as soluções foram centrifugadas a 3000 rpm por 10 min e o sobrenadante foi analisado por EAA-HG.

Isotermas de adsorção

Para obtenção das isotermas de adsorção, os testes foram feitos em batelada, a partir de 20 mL de soluções de arsenato de sódio com concentrações de 1, 5, 7, 10, 15, 20, 25, 30, 75, 100, 125 e 150 mg L⁻¹ e 100 mg do adsorvente (HT-Fe ou HT), respectivamente, sob agitação constante, num sistema termostatizado, $25 \pm 0,5$ °C, por um período de 12 h. O pH das soluções foi ajustado para 4,0; 7,0 e 9,0. Após o tempo de contato, as soluções foram centrifugadas a 3000 rpm por 10 min e o sobrenadante foi analisado por EAA-HG.

Cinética de adsorção

A cinética de adsorção foi realizada em batelada, sob agitação e em um sistema termostatizado, 25 ± 0.5 °C. Foram utilizados 100 mg do adsorvente (HT-Fe) e 20 mL de solução de As(V) nas concentrações de 1, 10, 75 e 160 mg L⁻¹, sendo o pH de cada uma dessas soluções ajustados previamente para 4,0; 7,0 e 9,0. Os materiais ficaram em contato por uma variação de tempo entre 0-12 h. Após os diferentes tempos de contato, as soluções foram centrifugadas a 3000 rpm por 10 min e o sobrenadante foi analisado por EAA-HG.

Efeito da competição de ânions

Os estudos do efeito da competição de ânions foram feitos em batelada, onde 100 mg do adsorvente (HT-Fe) foram adicionados a 20 mL de soluções de As(V) 75 mg L⁻¹ e contendo os ânions Cl⁻, I⁻, NO₃⁻, SO₄⁻², SeO₃⁻² e PO₄³⁻ em concentração equimolar (1 mmol L⁻¹). Foram utilizados no preparo das soluções os sais NaCl, KI, NaNO₃, Na₂SO₄, Na₂SeO₃ e KH₂PO₄. As amostras foram mantidas sob agitação em banho termostatizado a 25 °C por 12 h. Após o tempo de contato, as amostras foram centrifugadas a 3000 rpm por 10 min e as concentrações de As(V) determinadas na solução por EAA-GH.

Dessorção de As(V)

Para os experimentos de dessorção promoveu-se a saturação de amostras de 100 mg do adsorvente utilizando-se soluções de As(V) 75,0 mg L⁻¹, que tiveram os valores de pH ajustados para 4,0 (pH ótimo). Após 12 h de contato, realizaram-se ciclos de lavagem do adsorvente para remover o excesso de As(V) não adsorvido e em seguida adicionou-se 5,0 mL das soluções dessorvedoras. As soluções dessorvedoras são compostas de NaCl, NaOH e a mistura de ambas, sendo preparadas conforme descrito por Kuzawa *et al.*.²⁴

RESULTADOS E DISCUSSÃO

Características do compósito HT-Fe

O resultado da análise por difratometria de raios-X confirmou que o difratograma obtido se ajusta ao padrão cristalográfico da hidrotalcita apresentado na literatura.²⁵ A definição dos picos encontrados, Figura 1, é um indicativo de cristalinidade para a hidrotalcita sintetizada, o que se deve à proximidade dos raios iônicos de Mg/Al (0,66/0,51 Å).²⁶ Os difratogramas do óxido de ferro, sintetizado individualmente e da HT-Fe (Figura 1) mostraram que não houve alteração estrutural significativa da hidrotalcita devido à incorporação do óxido de ferro, pois grande parte dos picos estão sobrepostos, dando indícios que ocorreu apenas a deposição do óxido de ferro em sua superfície.

Figura 1. Difratogramas de raios-X: hidrotalcita (a), óxido de ferro (b) e compósito hidrotalcita-óxido de ferro (c)

Os picos obtidos para os valores de 2 θ iguais a 13,70; 27,29 e 31,14 correspondem, respectivamente, aos planos de difração em (0 0 3), (0 0 6) e (0 1 2) e indicam que o material sintetizado apresenta simetria romboédrica.²⁶

A microscopia eletrônica de varredura (MEV) foi utilizada para avaliar a forma e a topografia do compósito magnético HT-Fe e HT. As micrografias de MEV do compósito HT-Fe e da HT pura são apresentadas na Figura 2. Esta figura mostra que na superfície do HT ocorreu a deposição de óxido de ferro, formando um aglomerado de aparência esponjosa. A micrografia do óxido de ferro puro sugere que o material formado possui cristais de pequeno tamanho com aparência esponjosa.²⁷

O óxido de ferro da superfície pode apresentar uma grande diversidade quanto à estrutura, com possibilidade de ser, na realidade, uma mistura de óxidos. A análise por difratometria de raios-X (Figura 1) mostra a presença de α -FeO(OH) (goethita), evidenciada pelos picos em d = 0,4193; 0,2098 e 0,1613 nm e γ -Fe₂O₃ (maghemita) em d = 0,2506 e 0,2956 nm.²⁸

Na Figura 3 são mostrados os espectros obtidos na região do infravermelho para a HT e para o compósito HT-Fe. As bandas de absorção, presentes em ambos os espectros, a ~ 3500 cm⁻¹ são atribuídas às vibrações de estiramento da ligação H – O dos grupos OH da camada de hidróxidos; uma banda referente a determinado modo vibracional da molécula de água aparece em ~ 1600 cm⁻¹ e sua intensidade é dependente do tipo de ânion e da quantidade de água na região interlamelar.^{18,22}

O ânion carbonato em um ambiente simétrico é caracterizado por uma simetria planar D3h, com três bandas de absorções ativas no infravermelho, como no caso do ânion carbonato livre. Na hidrotalcita estas bandas ocorreram entre 450 a 780 cm⁻¹, onde também foram evidenciadas as bandas correspondentes às vibrações das ligações Al – O e Mg – O. A presença de um ombro em torno de 1400 cm⁻¹ ou de uma banda na região de 1360 cm⁻¹ tem sido atribuída à redução da simetria do carbonato (sítio de simetria C2v) e à desordem natural no espaço interlamelar.²⁹

Figura 2. Micrografias (escala = $10 \ \mu m$) da hidrotalcita-óxido de ferro (a) e da hidrotalcita (b)

No compósito HT-Fe observou-se ainda um deslocamento das bandas, que pode ser atribuído a uma perturbação do ânion carbonato com o óxido de ferro, cuja ligação Fe – O se manifesta na banda evidenciada em ~ 602 cm^{-1} .²² No entanto, a semelhança observada para ambos os espectros de infravermelho mostra que a incorporação do óxido de ferro não alterou significativamente a estrutura da hidrotalcita de partida.

Figura 3. Espectros de infravermelho da hidrotalcita-óxido de ferro (HT-Fe) e hidrotalcita (HT)

Efeito do pH

Pela Figura 1S, material suplementar, pode-se observar que a porcentagem de adsorção do As(V) pelo adsorvente aumenta com a diminuição do valor de pH, alcançando um valor máximo de 88,7% em pH igual a 4,0 e valor mínimo em pH igual a 10,0. A diminuição da adsorção com o aumento do pH pode ser atribuída à competição crescente entre grupos hidroxilas (OH⁻) e as espécies de As(V) pelos sítios de adsorção, pois à medida que se aumenta o valor de pH, aumenta-se a concentração de hidroxilas.³⁰ Outra explicação, é que a HT apresenta ponto de carga zero (pH_{pcz}) no intervalo de pH de 6,8-8,9 e para pH > pH_{pcz} a sua superfície torna-se carregada nega-

tivamente fazendo com que atue repelindo as espécies aniônicas de As(V). No entanto, quando pH < pH_{pcz} a superfície do adsorvente se torna positivamente carregada, favorecendo a adsorção das espécies de As(V).¹⁸ Observa-se que em pH igual a 2,0 ocorre uma diminuição da porcentagem de As(V) removida, o que é devido à perda de estabilidade dos HDLs e consequente danificação de suas estruturas, o que diminui significativamente a adsorção de oxiânions.¹

Em um experimento de adsorção de arsenato conduzido em pH 4,0 com a HT-Fe foi analisada, no sobrenadante, a concentração dos metais Mg, Al e Fe pela técnica de EAA, onde não se detectou a presença dos metais. Isto comprova que a HT-Fe não se dissolve quando a adsorção do arsenato é conduzida em pH 4,0.

Cinética de adsorção

Efeito da concentração, pH e do tempo de contato

Pela Figura 2S, material suplementar, pode-se observar que nos instantes iniciais a adsorção é rápida para todas as concentrações e valores de pH, entretanto, à medida que ocorre a saturação dos sítios de adsorção se verifica uma diminuição na taxa de adsorção. A maior quantidade do As(V) é removida na primeira hora para todas as concentrações de As(V) e valores de pH. Os resultados mostram remoção de 95, 92 e 96% para os pH 4,0; 7,0 e 9,0, respectivamente, para a concentração inicial de 1,0 mg L-1, apenas no período de 1 h de contato. Observam-se também valores de retenção para a concentração inicial de 1,0 mg L⁻¹ com patamares de 100% para os três valores de pH estudados ao final de 8 h. Assim, a eficiência na adsorção de As(V) pela HT-Fe é afetada pelo pH e pela sua concentração no meio, sendo que o tempo para que a sua quantidade removida permanecesse constante variou de 8 a 10 h. Lazaridis et al.,31 também estudando a adsorção com menor concentração de As(V) (20 mg L-1) por um HDL não calcinado, verificaram a necessidade de pelo menos 8 h para que a quantidade removida deste adsorbato permanecesse constante. No entanto, Yang et al.,18 estudando a remoção em menores concentrações de As(V) (20 µg L-1) por meio de uma HDL não calcinada, necessitaram de um tempo maior (23 h) para que a quantidade removida deste adsorbato permanecesse constante.

Modelo matemático da cinética de adsorção

Estudaram-se os modelos cinéticos de pseudoprimeira ordem de Lagergreen,²¹ e de pseudossegunda ordem,³² para examinar o mecanismo que controla o processo de adsorção. A validade destes modelos pode ser avaliada pelos gráficos lineares de cada equação: log $(q_e - q_t)$ vs t para o modelo de pseudoprimeira ordem, t/q_t vs t para o modelo de pseudossegunda ordem (Equação 1). Os parâmetros cinéticos do processo de adsorção do As(V) sobre o compósito HT-Fe foram obtidos pelas regressões lineares dos gráficos de cada modelo (Tabela 1). A avaliação quantitativa dos modelos foi realizada pela comparação dos coeficientes de correlação. Os resultados mostraram que o processo de adsorção que se ajustou melhor aos dados experimentais (R² > 0,98) foi o de pseudossegunda ordem. O modelo de pseudossegunda ordem é descrito pela Equação 1, onde $q_e e q_t$ são, respectivamente, as quantidades adsorvidas no equilíbrio e no instante *t* e k_2 a constante de velocidade. Este modelo evidencia a quimissorção ou o mecanismo de adsorção ativado como etapa determinante do mecanismo de adsorção e não uma transferência de massa em solução.^{33,34}

$$\frac{t}{q_t} = \frac{1}{k_2 x q_e^2} + \frac{1}{q_e} x t$$
(1)

As quantidades de As(V) adsorvidas no equilíbrio (q_e) calculadas a partir da equação de pseudossegunda ordem e os valores experimentais (q exp) (Tabela 1) apresentam resultados com valores próximos, confirmando o ajuste do modelo de pseudossegunda ordem para este experimento, indicando a ocorrência da quimissorção entre adsorvente e adsorvato.

Para este modelo observa-se que os maiores valores para a constante de velocidade de adsorção ocorrem para menores concentrações de As(V) (1,0 mg L⁻¹) e à medida que a concentração do adsorvato aumenta, os valores para a constante tendem a diminuir, o que confirma a relação inversa de dependência entre estas duas grandezas. Portanto, a constante é totalmente dependente da concentração inicial de As(V). Verifica-se que, para a equação de pseudossegunda ordem, um aumento na concentração inicial resulta em um significativo aumento na quantidade de íons As(V) adsorvidos no equilíbrio.

Isotermas de adsorção

A curva isotérmica de adsorção é fundamental para investigar os sistemas de adsorção, porque descreve como os adsorvatos interagem com os adsorventes. A curva isotérmica mais comumente utilizada no estudo da adsorção de oxiânions em HDLs é a de Langmuir, porém neste trabalho foi avaliada também a isoterma de Freundlich.^{1,30}

 Tabela 1. Parâmetros cinéticos para a adsorção de As(V) sobre a hidrotalcita-óxido de ferro

C _o	pН	q exp	Ps	eudoprimeira orde	m	Pseudossegunda ordem			
(mg L ⁻¹)		$\begin{array}{ccc} (mg \ g^{\text{-1}}) & & K_1 x \ 10^{\text{-3}} & & q_e \\ & (L \ h^{\text{-1}}) & & (mg \ g^{\text{-1}}) \end{array}$		\mathbb{R}^2	K ₂ (g mg ⁻¹ h ⁻¹)	q_e (mg g ⁻¹)	\mathbb{R}^2		
1,0	4,0	0,24	8,08	0,020	0,889	5,15 x 10 ⁻¹	0,25	0,999	
	7,0	0,23	5,69	0,030	0,881	4,44 x 10 ⁻¹	0,24	0,999	
	9,0	0,22	5,25	0,020	0,949	1,17 x 10 ⁻¹	0,22	0,999	
10,0	4,0	2,3	4,35	0,26	0,951	6,16 x 10 ⁻²	2,3	0,999	
	7,0	2,2	4,28	0,34	0,982	5,41 x 10 ⁻²	2,2	0,999	
	9,0	1,2	3,34	0,67	0,931	2,16 x 10 ⁻²	1,1	0,989	
75,0	4,0	11	4,01	2,5	0,979	3,65 x 10 ⁻³	11	0,999	
	7,0	7,1	3,41	1,3	0,940	1,19 x 10 ⁻³	7,2	0,999	
	9,0	4,3	6,15	4,3	0,967	1,53 x 10 ⁻³	5,2	0,961	
160,0	4,0	17	4,77	14	0,953	1,25 x 10 ⁻³	19	0,991	
	7,0	11	5,50	12	0,795	1,29 x 10 ⁻³	10	0,981	
	9,0	8,3	5,25	3,7	0,984	3,09 x 10 ⁻³	8,7	0,997	

9,0

7,44

0.23

mulotale	lia (111)													
			Р	arâmetros	de Langmu	uir				Pa	râmetros d	le Freundlicl	n	
		HT	-Fe			Н	Т			HT-Fe			HT	
pН	Q	b	R _L	\mathbb{R}^2	Q	b	R _L	\mathbb{R}^2	K _F	1/n	\mathbb{R}^2	K_{F}	1/n	\mathbb{R}^2
	(mg g ⁻¹)	(L mg ⁻¹)			(mg g ⁻¹)	(L mg ⁻¹)			(L mg ⁻¹)			(L mg ⁻¹)		
4,0	24,09	0,25	0,026	0,997	16,24	0,36	0,018	0,997	3,60	0,61	0,917	3,02	0,47	0,860
7.0	10.19	0.36	0.018	0.990	6.59	0.43	0.015	0.978	2.28	0.40	0.899	1.50	0.38	0.914

0,020

0.32

0,977

Tabela 2. Parâmetros calculados a partir dos modelos de Langmuir e Freundlich para a adsorção do As(V) pela hidrotalcita-óxido de ferro (HT-Fe) e para a hidrotalcita (HT)

A expressão linear de Langmuir é dada pela Equação 2:

0.065

$$\frac{C_{e}}{q_{e}} = \frac{1}{Q_{o}b} + \frac{C_{o}}{Q_{o}}$$
(2)

5.66

0.983

sendo C_e a concentração de íons As(V) no equilíbrio (mg L⁻¹), q_e a quantidade adsorvida no equilíbrio (mg g⁻¹), Q_o constante relacionada com a capacidade de adsorção máxima (mg g⁻¹) e b a constante relacionada à energia de adsorção (L mg⁻¹). O parâmetro R_L (Equação 3) é uma constante adimensional chamada parâmetro de equilíbrio, o qual é definido como:

$$\mathsf{R}_{\mathsf{L}} = \frac{1}{(1 + \mathsf{bC}_{\mathsf{o}})} \tag{3}$$

onde $C_o é$ a concentração inicial mais alta (mg L⁻¹) e b a constante de Langmuir. O valor de R_L entre 0 e 1 indica adsorção favorável.

A expressão linear de Freundlich é dada pela Equação 4:

$$\log q_e = \log K_F + \frac{1}{n} \log C_e$$
(4)

sendo q_e a quantidade de íons adsorvida no equilíbiro (mg g⁻¹), C_e a concentração de íons As(V) na fase líquida no equilíbrio (mg L⁻¹), K_F a constante relacionada com a capacidade de adsorção e 1/n a constante de Freundlich. Se o valor de 1/n é menor que 1 a adsorção é favorável. As constantes de Langmuir e Freundlich foram determinadas pela regressão linear das equações linearizadas e apresentadas para o compósito HT-Fe e a HT na Tabela 2.

Os valores dos coeficientes de correção das retas mostram que o modelo de Langmuir descreve melhor os dados de adsorção e os valores de R_L indicam que a adsorção é um processo favorável na faixa de concentração e pH estudados, tanto para a HT-Fe como para a HT. Isto sugere que há uma tendência na formação de monocamada do adsorvato na superfície dos adsorventes envolvendo energias uniformes de adsorção.^{35,36}

Para os três valores de pH e para ambos os adsorventes, ocorre uma redução na capacidade de adsorção máxima (Q_o) na medida em que se aumenta o valor de pH.

A constante relacionada à energia de ligação soluto-superfície do adsorvente (b) foi maior em pH 7,0 para ambos os adsorventes, sendo este valor um pouco maior para a HT. No entanto, observouse que a capacidade de adsorção máxima para a HT-Fe é de 24,1 mg g⁻¹, capacidade maior que a da HT. O valor da quantidade máxima adsorvida encontrado para HT-Fe foi também superior ao encontrado em experimento conduzido somente com o óxido de ferro (2,2 mg g⁻¹) e mantidas as mesmas condições experimentais. A HT-Fe apresentou capacidade máxima de adsorção superior aos encontrados para adsorventes como hidróxido de ferro granulado (5,0 mg g⁻¹),³⁷ pasta de cimento Portland (3,98 mg g⁻¹)¹² e alumina ativada (15,9 mg g⁻¹).¹³ Entretanto, a vantagem da HT-Fe em relação aos anteriores é que apresenta propriedades magnéticas, a quais permitem que seja separada da água por um simples processo magnético.

0.963

1.77

0.42

Efeito da competição de ânions

1,08

Na Tabela 3 são mostrados os valores da capacidade de adsorção de As(V) em soluções contendo outros ânions. Observa-se que a porcentagem de remoção do As(V) diminui com o aumento da carga do ânion interferente. Portanto, PO43- foi o ânion que provocou a maior redução na adsorção e o NO3 o que menos influenciou na redução da adsorção de As(V), quando comparada com a adsorção deste na ausência dos ânions estudados. Este mesmo comportamento foi obtido por Yang et al.,¹⁸ no estudo do efeito dos ânions NO₃⁻, CO₃²⁻, SO₄²⁻ e PO₄³⁻ na adsorção de As(V) pela HT. De modo geral, verificou-se que o PO₄³⁻ provocou maior redução da adsorção, seguido dos ânions divalentes SeO₃²⁻ e SO₄²⁻ e dos ânions monovalentes I⁻, Cl⁻ e NO₃⁻. Conforme já reportado por You el al.38 e Dutta et al.39 a interferência no processo de adsorção se deve a uma maior afinidade dos HDLs por ânions de maior densidade de carga, pois a densidade de carga e a interação eletrostática são grandezas diretamente proporcionais. Observa-se também uma redução na remoção de As(V) para valores mais elevados de pH, o que se deve principalmente a uma maior competição de hidroxilas (OH-) pelos sítios de adsorção da HT-Fe.

Tabela 3. Efeito da adição equimolar de alguns ânions na remoção de As(V) pela HT-Fe em diferentes valores de pH

Ânions adicionados	Remoção de As(V) (%)						
	pH = 4,0	pH = 7,0	pH = 9,0				
As (V)	84,1	53,2	42,5				
As $(V) + NO_3^-$	82,0	51,3	40,5				
As $(V) + Cl^{-}$	80,2	49,6	40,0				
As $(V) + I^{-}$	75,2	46,1	38,4				
As $(V) + SO_4^{2}$ -	68,4	44,7	37,6				
As (V) + SeO ₃ ²⁻	58,8	40,2	34,1				
As $(V) + PO_4^{3-}$	54,2	36,1	32,2				

Dessorção do As(V)

A Tabela 4 mostra que o melhor valor para a dessorção de As(V) do HT-Fe (81,7%) foi obtido utilizando-se a solução de NaOH (20% m/v) e o menor valor (21,9%) obtido com a solução de NaCl (30% m/v). Isto indica uma maior dessorção com a solução contendo íons hidroxilas (OH⁻), quando comparada com a solução contendo íon cloreto (Cl⁻). Porém, estudos de difração de raios-X mostraram que a estrutura da HT-Fe foi danificada apenas pelo eluente NaOH 20% (m/v), inviabilizando o seu reaproveitamento. Assim, nas soluções de dessorção foram mantidas as concentrações de NaOH 3 e 6% (m/v) e variou-se a concentração de NaCl de 5 a 30% (m/v). Como é possível observar, ocorre uma contribuição aditiva dos ânions cloreto e

0,29

0,917

hidroxila, sendo que os melhores resultados são alcançados à medida que se aumenta a concentração de ambos nas soluções de dessorção. Da mesma forma, Yang *et al.*¹⁸ verificaram que a dessorção de As(V) pela HT está relacionada tanto com a espécie aniônica, quanto com a concentração desta na solução de dessorção.

 Tabela 4. Composição das soluções de dessorção e razões para a dessorção de As(V) do adsorvente HT-Fe

Solução de Dessorção	Dessorção (%)	Quantidade de As(V) dessorvida (mg g ⁻¹)
NaCl (30% m/v)	21,9	3,3
NaOH (3% m/v)	31,5	4,7
NaOH (20% m/v)	81,7	12
NaCl (5% m/v) + NaOH (3% m/v)	53,8	8,1
NaCl (10% m/v) + NaOH (3% m/v)	57,3	8,6
NaCl (20% m/v) + NaOH (3% m/v)	57,5	8,6
NaCl (30% m/v) + NaOH (3% m/v)	60,1	9,0
NaCl (30% m/v) + NaOH (6% m/v)	65,4	9,8

O procedimento de dessorção foi repetido por cinco ciclos consecutivos, empregando-se a solução de dessorção composta por NaCl 5% (m/v) + NaOH 3% (m/v). Esta solução foi empregada por proporcionar um resíduo final contendo As(V) com concentração menor de íons OH e Cl e por ser menos agressiva para a estrutura da HT-Fe. Após os cinco ciclos consecutivos verificou-se um aumento (cerca de 5%), ou seja, uma remoção final de 56% de As(V) do HT-Fe já observada no segundo ciclo de dessorção, depois do qual não mais se alterou a massa dessorvida.

A massa do compósito submetido a dois ciclos de dessorção com a solução de NaCl 5% (m/v) + NaOH 3% (m/v) foi submetida novamente ao processo de adsorção com As(V) e apresentou cerca de 70% da eficiência do adsorvente original. Assim, o adsorvente pode ser facilmente utilizado em processos consecutivos de adsorção e dessorção.

CONCLUSÕES

O presente estudo mostra que o compósito magnético HT-Fe pode ser usado como um efetivo adsorvente para remoção de As(V) de soluções aquosas. Os resultados demonstraram que o processo de adsorção é influenciado pelo pH da solução, sendo que em pH 4,0 obteve-se a máxima adsorção. O mecanismo cinético segue o modelo de pseudossegunda ordem. A adsorção de arsênio pela HT-Fe é dependente do tempo de contato, ocorrendo uma diminuição muito grande da concentração de As(V) na solução após a primeira hora de contato (redução de 95% para a concentração inicial 1 mg L-1 em pH 4,0) mostrando uma cinética de adsorção muito rápida. A Equação de Langmuir descreve adequadamente os dados de equilíbrio, sendo a capacidade de adsorção máxima de íons As(V) sobre a HT-Fe igual a 24,09 mg g⁻¹ em pH 4,0. O valor de R₁ indica que a adsorção é um processo favorável na faixa de concentração estudada. A presença de outros ânions na solução pode provocar uma competição pelos sítios de adsorção da HT-Fe, sendo o PO43- o que provocou a maior redução na adsorção do As(V).

A HT-Fe pode ser reutilizada pela dessorção do As(V) com solução de NaCl 5% (m/v) + NaOH 3% (m/v), sendo que apresentou após dois ciclos de dessorção uma eficiência de 70%, quando submetida novamente ao processo de adsorção com As(V). De forma geral, o compósito magnético HT-Fe apresentou bons resultados para a remoção de As(V) de soluções aquosas, atingindo 100 e 88% para uma concentração inicial de 1 e 10 mg L⁻¹ de As(V) em pH 7,0, respectivamente. Os resultados também foram satisfatórios empregando HT-Fe para a remoção de As(V) de amostras de águas de minas, torneira e rio coletadas na cidade de Ouro Preto, MG.¹⁰ As águas naturais após sofrerem tratamento ficaram com a concentração de arsênio abaixo do máximo permitido pela legislação brasileira (10 μ g L⁻¹), tornando-as próprias para consumo humano. Assim, os resultados obtidos para adsorção e dessorção de As(V) pela HT-Fe mostram a possibilidade de seu emprego em processos de remoção de As(V) de ambientes contaminados e posterior remoção magnética do material sintetizado.

MATERIAL SUPLEMENTAR

As Figuras 1S e 2S encontram-se disponíveis em http://quimicanova.sbq.org.br, na forma de arquivo PDF, com acesso gratuito.

AGRADECIMENTOS

À FAPEMIG pelo apoio financeiro, ao CNPq pela bolsa concedida e ao Prof. M. P. F. Fontes, do Departamento de Solos/UFV pela análise de DRX e constante discussão sobre o assunto.

REFERÊNCIAS

- 1. Goh, K-H.; Lim, T-T.; Dong, Z.; Water Res. 2008, 42, 1343.
- Lazardis, N. K.; Karapantsios, T. D.; Georgantas, D.; *Water Res.* 2003, 37, 3023.
- Machado, N. R. C. F.; Bigatão, D. M. M. M.; *Quim. Nova* 2007, 30, 1108.
- WHO (World Health Organization); Guidelines for drinking-water quality, 2nd ed., Genebra, 1993, vol. 1.
- 5. Ministério da Saúde; *Portaria nº*. 518, de 25 de março de 2004 Estabelece os procedimentos e responsabilidades relativos ao controle e vigilância da qualidade da água para consumo humano e seu padrão de potabilidade e dá outras providências. Revoga a Portaria nº. 1469, de 29 de dezembro de 2000.
- 6. Ko, I.; Kim, J. Y.; Kim, K. W.; Colloids Surf., A 2004, 234, 43.
- Lytle, D. A.; Sorg, T. J.; Snoeyink, V. L. J.; Water Supply Res. Technol. 2005, 54, 545.
- Ghimire, K. N.; Inoue, K.; Yamaguchi, H.; Makino, K.; Miyajima, T.; Water Res. 2003, 37, 4945.
- Dousová, B.; Machovic, V.; Kolousek, D.; Kovanda, F.; Dornicák, V.; Water, Air, Soil Pollut. 2003, 149, 251.
- Mendes, G.; Bellato, C. R.; Marques Neto, J. de O.; *Quim. Nova* 2009, 32, 1471.
- 11. Shevade, S.; Ford, R. G.; Water Res. 2004, 38, 3197.
- Kundu, S.; Kavalakatt, S. S.; Pal, A.; Ghosh, S. K.; Mandal, M.; Pal, T.; Water Res. 2004, 38, 3780.
- 13. Lin, T.-F.; Wu, J.-K.; Water Res. 2001, 35, 2049.
- 14. Ladeira, A. C. Q.; Ciminelli, V. S. T.; Water Res. 2004, 38, 2087.
- Genç-Fuhrman, H.; Bregnhoj, H.; McConchie, D.; *Water Res.* 2005, *39*, 2944.
- Boddu, V. M.; Abburi, K.; Talbott, J. L.; Smith, E. D.; Haasch, R.; Water Res. 2008, 42, 633.
- 17. Kartal, S. N.; Imamura, Y.; Bioresour. Technol. 2005, 96, 389.
- Yang, L.; Shahrivari, Z.; Liu, P. K. T.; Sahimi, M.; Tsotsis, T. T.; Ind. Eng. Chem. Res. 2005, 44, 6804.
- Bradruzzaman, M.; Westerhoff, P.; Knappe, D. R. U.; *Water Res.* 2004, 38, 4002.
- Fagundes, T.; Bachmann, A. W. L.; Tomaz, H. S. O.; Rodrigues, C. A.; *Quim. Nova* 2008, *31*, 1305.
- 21. Zhang, Y.; Yang, M.; Huang, X.; Chemosphere 2003, 51, 945.

- Conceição, L.; Pergher, S. B. C.; Moro, C. C.; Oliveira, L. C. A.; *Quim. Nova* 2007, 30, 1077.
- 23. Reichle, W. T.; Solid State Ionics 1986, 22, 135.
- 24. Kuzawa, K.; Jung, Y.-J.; Kiso, Y.; Yamada, T.; Nagai, M.; Lee, T-G.; *Chemosphere* **2006**, *62*, 45.
- 25. Gillman, G. P.; Sci. Total Environ. 2006, 366, 926.
- Rodrigues, J. C.; *Dissertação de Mestrado*, Universidade Federal do Rio Grande do Sul, Brasil, 2007.
- Gonçalves, M.; Oliveira, L. C. A.; Guerreiro, M. C.; *Quim. Nova* 2008, 31, 518.
- Cornell, R. M.; Schwertmann, U.; *The Iron Oxides*, 3rd ed., Weinheim-VHC: New York, 2003.
- Bastiani R.; Dissertação de Mestrado, Universidade Federal do Rio de Janeiro, Brasil, 2001.
- Das, J.; Patra, B. S.; Baliasingh, N.; Parida, K. M.; *Appl. Clay Sci.* 2006, 32, 252.

- Lazarids, N. K.; Hourzemanoglou, A.; Matis, K. A.; *Chemosphere* 2002, 47, 319.
- 32. Ho, Y. S.; Mckay, G.; Water Res. 2000, 34, 735.
- Vitali, L.; Laranjeira, M. C. M.; Fávere, V. T.; Gonçalves, N. S.; *Quim. Nova* **2008**, *31*, 1400.
- 34. Fungaro, D. A.; Bruno, M.; Quim. Nova 2009, 32, 955.
- Limousin, G.; Gaudet, J. P.; Charlet, L.; Szenknect, S.; Barthès, V.; Krimissa, M.; *Appl. Geochem.* 2007, 22, 249.
- 36. Rodrigues, L. A.; Silva, M. L. C. P.; Quim. Nova 2009, 32, 1206.
- Yokoy, T.; Tatsumi, T.; Yoschitake, H.; J. Colloid Interface Sci. 2004, 274, 451.
- 38. You, Y.; Vance, G. F.; Zhao, H.; Appl. Clay Sci. 2001, 20, 13.
- 39. Dutta, P. K.; Puri, M.; Phys. Chem. 1989, 93, 376.