

CHEMICAL MODIFICATIONS OF A NATURAL XANTHONE AND ANTIMICROBIAL ACTIVITY AGAINST MULTIDRUG RESISTANT *Staphylococcus aureus* AND CYTOTOXICITY AGAINST HUMAN TUMOR CELL LINES

Ana Camila Micheletti, Neli Kika Honda, Dênis Pires de Lima e Adilson Beatriz*

Departamento de Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Müller, 1555, 79074-460 Campo Grande - MS, Brasil

Maria Rita Sant'ana e Nadia Cristina Pereira Carvalho

Seção de Análises Clínicas, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, s/n, 79080-190 Campo Grande - MS, Brasil

Maria de Fatima Cepa Matos, Lyara Meira Marinho Queiróz e Danielle Bogo

Departamento de Farmácia-Bioquímica, Universidade Federal de Mato Grosso do Sul, CP 549, 79080-190 Campo Grande - MS, Brasil

José Roberto Zorzatto

Faculdade de Computação, Universidade Federal de Mato Grosso do Sul, CP 549,79080-190 Campo Grande - MS, Brasil

¹H, ¹³C, HSQC and HMBC NMR spectra and EI/MS spectra of new substances

Figure 1S. ¹H NMR spectrum of (3), 300 MHz, CDCl₃

Figure 2S. ¹³C NMR spectrum of (3), 75 MHz, CDCl₃

Figure 3S. EI/MS spectrum of (3)

Figure 4S. ¹H NMR spectrum of (4), 300 MHz, CDCl₃

Figure 5S. ¹³C NMR spectrum of (4), 75 MHz, CDCl₃

Figure 6S. EI/MS spectrum of (4)

Figure 7S. ¹H NMR spectrum of (5), 300 MHz, CDCl₃

75.476 L f2

300.1312

1k 1k 00 100 dB dB dB MH

ing parameters 32768 75.4677498 MHz EM 0 1.00 Hz 0 1.40

ors

Figure 8S. ¹³C NMR spectrum of (5), 75 MHz, CDCl₃

Figure 9S. HSQC spectrum of (5), CDCl₃

Figure 10S. HMBC spectrum of (5), CDCl₃

Figure 11S. EI/MS spectrum of (5)

Figure 12S. ¹H NMR spectrum of (7), 300 MHz, methanol-d₄

Micheletti et al.

Figure 13S. ¹³C MNR spectrum of (7), 75 MHz, DMSO-d₆

Figure 14S. EI/MS spectrum of (7)

Figure 15S. ¹H NMR spectrum of (8), 300 MHz, CDCl₃

Figure 16S. ¹³C NMR spectrum of (8), 75 MHz, CDCl₃

Figure 17S. EI/MS spectrum of (8)

Figure 18S. ¹H NMR spectrum of (9), 300 MHz, acetone-d₆

Micheletti et al.

Figure 19S. ¹³C NMR spectrum of (9), 75 MHz, methanol-d₄

Figure 20S. EI/MS spectrum of (9)

Figure 22S. ¹³C NMR spectrum of (10), 75 MHz, methanol- d_4

Figure 23S. EI/MS spectrum of (10)

Figure 24S. ¹H NMR spectrum of (11), 300 MHz, CDCl₃

Figure 25S. ¹³C NMR spectrum of (11), 75 MHz, CDCl₃

Figure 26S. EI/MS spectrum of (11)

Figure 27S. ¹H NMR spectrum of (12), 300 MHz, acetone-d₆/methanol-d₄

Figure 28S. ¹³C NMR spectrum of (12), 75 MHz, acetone-d_d methanol-d₄

Figure 29S. EI/MS spectrum of (12)

Figure 30S. ¹H NMR spectrum of (13), 300 MHz, CDCl₃

Figure 31S. ¹³C NMR spectrum of (13), 75 MHz, CDCl₃

Figure 35S. ¹H NMR spectrum of (14), 300 MHz, CDCl₃

Figure 36S. ¹³C NMR spectrum of (14), 75 MHz, CDCl₃

Figure 37S. EI/MS spectrum of (14)

Figure 40S. ¹H NMR spectrum of (15), 300 MHz, acetone-d₆

Figure 41S. ¹³C NMR spectrum of (15), 75 MHz, methanol-d₄

Figure 42S. EI/MS spectrum of (15)

Figure 43S. ¹H NMR spectrum of (16), 300 MHz, methanol-d₄

Micheletti et al.

Figure 44S. ¹³C NMR spectrum of (16), 75 MHz, methanol-d₄

Figure 45S. EI/MS spectrum of (16)

Figure 46S. ¹H NMR spectrum of (17), 300 MHz, DMSO-d₆

Figure 47S. ¹³C NMR spectrum of (17), 75 MHz, DMSO-d₆

Figure 49S. ¹H NMR spectrum of (18), 300 MHz, CDCl₃/ methanol-d₄

Figure 50S. ¹³C NMR spectrum of (18), 75 MHz, CDCl₃/ methanol-d₄

Figure 53S. ¹³C NMR spectrum of (19), 75 MHz, DMSO-d₆

Figure 54S. HSQC spectrum of (19), DMSO-d₆

Figure 55S. HMBC spectrum of (19), DMSO-d₆

Figure 57S. ¹H NMR spectrum of (20), 300 MHz, CDCl₃

Figure 58S. ¹³C NMR spectrum of (20), 75 MHz, CDCl₃

Figure 59S. EI/MS spectrum of (20)