

REMOÇÃO DOS CORANTES AZUL BRILHANTE, AMARELO CREPÚSCULO E AMARELO TARTRAZINA DE SOLUÇÕES AQUOSAS UTILIZANDO CARVÃO ATIVADO, TERRA ATIVADA, TERRA DIATOMÁCEA, QUITINA E QUITOSANA: ESTUDOS DE EQUILÍBRIO E TERMODINÂMICA

Guilherme Luiz Dotto*, Mery Luiza Garcia Vieira, Janaína Oliveira Gonçalves e Luiz Antônio de Almeida Pinto Escola de Química e Alimentos, Universidade Federal do Rio Grande, Rua Eng. Alfredo Huch, 475, 96201-900 Rio Grande - RS, Brasil

Recebido em 5/11/10; aceito em 24/2/11; publicado na web em 5/5/11

REMOVAL OF ACID BLUE 9, FOOD YELLOW 3 AND FD&C YELLOW N° 5 DYES FROM AQUEOUS SOLUTIONS USING ACTIVATED CARBON, ACTIVATED EARTH, DIATOMACEOUS EARTH, CHITIN AND CHITOSAN: EQUILIBRIUM STUDIES AND THERMODYNAMIC. This work compared activated carbon, activated earth, diatomaceous earth, chitin and chitosan to removal acid blue 9, food yellow 3 and FD&C yellow n° 5 dyes from aqueous solutions with different pH values (2-10). In the best process condition for each dye, equilibrium studies were carried out at different temperatures (from 298 to 328 K) and Langmuir, Freundlich, Redlich-Peterson, Temkin and Dubinin-Radushkevich models were fitted with experimental data. In addition, entropy change, Gibbs free energy change and enthalpy change were obtained in order to verify the thermodynamic adsorption behavior.

Keywords: activated carbon; chitosan; enthalpy.

INTRODUÇÃO

Muitas indústrias, especialmente as têxteis e de alimentos, utilizam corantes e pigmentos para colorir seus produtos.¹ Estima-se que são produzidas anualmente no mundo, entre 7 x 105 e 1 x 106 toneladas de corantes artificiais.² Devido às baixas taxas de fixação ao longo do processamento, uma grande parcela destes corantes é descartada nos efluentes industriais.3 A remoção destes corantes de efluentes é ambientalmente importante, pois, são considerados altamente tóxicos para a vida aquática, afetando processos simbióticos, reduzindo a capacidade de reoxigenação da água, dificultando a passagem de luz solar e, consequentemente, reduzindo a atividade fotossintética.¹⁻⁴ Sabe-se que efluentes contendo corantes são muito difíceis de tratar, uma vez que estes são moléculas recalcitrantes, resistentes à digestão aeróbia e estáveis a agentes oxidantes.4 Outra dificuldade é o tratamento de efluentes contendo baixas concentrações de moléculas de corantes. Neste caso, os métodos convencionais para remover corantes são economicamente desfavoráveis e/ou tecnicamente complicados.5 Assim, o processo de adsorção surge como alternativa para a remoção de corantes de efluentes.

A adsorção usando adsorventes de baixo custo é, atualmente, reconhecida como um método efetivo e econômico para a descontaminação de água.⁵ Devido a isso, muitos estudos vêm sendo desenvolvidos usando o processo de adsorção para remover corantes de soluções aquosas utilizando adsorventes de baixo custo.⁶⁻¹⁵ A maioria destes estudos está direcionada à remoção de corantes têxteis, sendo que a remoção de corantes alimentícios é raramente investigada. Estes estudos são baseados em isotermas,¹ termodinâmica,⁸ cinética¹⁵ e mecanismos,⁷ mostrando que a adsorção de corantes pode ser estudada sob diferentes pontos de vista. Entretanto, existe um consenso entre os pesquisadores de adsorção de corantes que a primeira etapa para a investigação do processo de adsorção é a escolha do adsorvente. De acordo com Crini e Badot,⁵ um adsorvente aceitável para a remoção de corantes necessita possuir as seguintes características: baixo custo, disponibilidade, alta capacidade e alta taxa de adsorção, alta seletividade e eficiência na remoção de diversos corantes. Até o presente momento não existe um único adsorvente capaz de satisfazer todos estes requisitos.⁵ O carvão ativado destaca-se por sua alta área superficial específica e porosidade;¹⁶ quitina e quitosana são biopolímeros renováveis, de baixo custo e suscetíveis a alterações químicas para aumentar sua capacidade de adsorção;^{2-5,12} a terra ativada e a terra diatomácea destacam-se pelo seu baixo custo e alta área superficial específica.^{9,10}

Após a escolha do adsorvente, a próxima etapa para elucidar o processo de adsorção é o estudo de equilíbrio. Os dados de equilíbrio são comumente conhecidos como isotermas de adsorção e descrevem como os corantes interagem com o material adsorvente, sendo críticos para a otimização do uso de adsorventes.⁵ Outro aspecto fundamental na adsorção de corantes é a determinação dos parâmetros termodinâmicos do processo.⁸ O comportamento termodinâmico de adsorção, geralmente, é mensurado através das mudanças da energia livre de Gibbs, entalpia e entropia,^{27,8} sendo que estes parâmetros são raramente encontrados na literatura para a adsorção de corantes alimentícios.

Os objetivos deste trabalho foram comparar carvão ativado, terra ativada, terra diatomácea, quitina e quitosana como adsorventes para a remoção dos corantes azul brilhante, amarelo crepúsculo e amarelo tartrazina de soluções aquosas em diferentes pHs (2-10); verificar o efeito da temperatura (298 a 328 K) nas isotermas de equilíbrio de adsorção, utilizando o melhor adsorvente para cada corante e, verificar o comportamento termodinâmico de adsorção através das variações de entalpia, entropia e energia livre de Gibbs.

PARTE EXPERIMENTAL

Adsorventes

Os adsorventes utilizados foram carvão ativado, terra ativada, terra diatomácea (Vetec, Brasil), quitina e quitosana. A quitina e a quitosana

foram obtidas a partir de resíduos de camarão-rosa (*Farfantepenaeus brasiliensis*), de acordo com Weska e colaboradores,¹⁷ e caracterizadas segundo seu grau de desacetilação (análise de infravermelho¹⁸) (Prestige 21, 210045, Japão). A quitina e a quitosana apresentaram graus de desacetilação de 45 \pm 1% e 85 \pm 1%, respectivamente.

Para todos os adsorventes empregados foram determinados o diâmetro de partícula,¹⁹ esfericidade,²⁰ massa específica¹⁹ e área superficial específica.²¹ Estes valores encontram-se na Tabela 1S, material suplementar.

Adsorbato

Foram utilizados como adsorbato três corantes alimentícios: azul brilhante, amarelo crepúsculo e amarelo tartrazina (Pluryquímica, Brasil). As especificações dos corantes e suas estruturas químicas estão apresentadas na Tabela 1. Todos os demais reagentes utilizados foram de grau analítico e todas as soluções foram preparadas com água destilada. Os comprimentos de onda utilizados para a leitura das concentrações de corante foram obtidos por varredura espectrofotométrica, sendo constantes e independentes do pH. Os coeficientes de determinação das curvas de calibração das soluções aquosas em concentrações de 0 a 100 mg L^{-1} foram de 0,999.

Experimentos para a comparação de adsorventes

As amostras de adsorvente (250 mg)¹ foram adicionadas em 800 mL de água destilada e tiveram seu pH corrigido (2-10) através da adição de 50 mL de solução tampão fosfato dissódico ácido cítrico 0,1M. As soluções foram agitadas por 30 min até que o pH alcançasse o equilíbrio, sendo este medido antes e após o processo de adsorção (Mars, MB10, Brasil). Em cada solução de adsorvente, foram adicionado 50 mL de uma solução contendo 2 g L⁻¹ de corante, sendo esta completada até 1 L com água destilada. Desta maneira, a concentração inicial de corante na fase líquida foi de aproximadamente 100 mg L⁻¹ em todas as soluções.¹

Os experimentos foram realizados em um tanque agitado tipo *jar-test* (Nova ética, 218 MBD, Brasil), sob agitação constante de 100 rpm e temperatura ambiente (298 \pm 1 K) até o equilíbrio (cerca de 48 h). O equilíbrio foi considerado quando a concentração de corante na fase líquida não apresentasse diferença entre três medidas consecutivas. Os experimentos foram realizados em réplica. A concentração de corante na fase líquida foi determinada por espectrofotometria (Quimis, Q108 DRM, Brasil) no respectivo comprimento de onda de cada corante (Tabela 1). O percentual de remoção dos corantes (%R) foi determinado pela Equação 1:

Corante	Estrutura química	Índice de cor (C.I.)	Classe química	Massa molar (g mol ⁻¹)	Comprimento de onda de máximo (nm)
Azul brilhante	$ \begin{array}{c} $	⊕ la 42090	Triarilmetano	792,8	408
Amarelo crepúsculo	Na ⁺ O=S=O Na ⁺ OH	15985	Azocorante	452,4	480
Amarelo tartrazina	N N N N N N O N O N A O N A O N A O N A O N A O N A O N A O N A O N A	19140	Azocorante	534,4	425

Tabela 1. Especificações e estrutura química dos corantes

Vol. 34, No. 7

Remoção dos corantes azul brilhante, amarelo crepúsculo e amarelo tartrazina

$$\% R = \frac{C_0 - C_e}{C_0} (100)$$
 (1)

onde $C_0 e C_e são$ as concentrações inicial e final de corante na fase líquida (mg L⁻¹), respectivamente.

Experimentos de equilíbrio

Utilizando o melhor adsorvente para cada corante no melhor valor de pH, foram construídas isotermas de equilíbrio em diferentes temperaturas (298, 308, 318 e 328 K). 50 mg de material adsorvente foram adicionados a 100 mL de água destilada, após, diferentes volumes de solução de corante contendo 7 g L⁻¹ foram adicionados nas soluções de adsorvente, as quais foram completadas até 200 mL com água destilada. As soluções foram colocadas em frascos de 500 mL e agitadas a 100 rpm usando um agitador termostatizado (Fanem, 315 SE, Brasil) por 48 h. Finalmente, o liquido foi filtrado (papel filtro Whatmann nº 40, o qual não possui interação com o corante) e a quantidade adsorvida foi determinada por espectrofotometria (Quimis modelo Q108 DRM, Brasil)¹. Todos os experimentos foram realizados em réplica. A capacidade de adsorção no equilíbrio (q_c) foi determinada pela Equação 2:

$$q_e = \frac{C_0 - C_e}{m} V \tag{2}$$

onde, $C_0 e C_e são$ as concentrações inicial e final na fase líquida (mg L⁻¹), respectivamente, m é a massa de adsorvente (g) e V é o volume da solução (L).

Modelos de isotermas de adsorção

Para estabelecer a correlação mais apropriada para as curvas de equilíbrio em todas as temperaturas para cada corante, cinco modelos de isotermas foram utilizados: Langmuir, Freundlich, Redlich-Peterson, Temkin e Dubinin-Radushkevich.^{1,5,8,20,21}

A teoria de Langmuir assume que a adsorção ocorre em sítios específicos e homogêneos na superfície do adsorvente, e cada sítio é responsável pela adsorção de apenas uma molécula de corante, não podendo ocorrer nenhuma adsorção adicional.⁵ O modelo de Langmuir pode ser escrito na forma da Equação 3:

$$q_e = \frac{q_m k_L C_e}{1 + k_L C_e}$$
(3)

onde, $q_{\rm m}$ é a máxima capacidade de adsorção na monocamada (mg g^1) e k_L é a constante de Langmuir (L mg^1).

Uma característica essencial da isoterma de Langmuir pode ser expressa pelo fator de separação $(R_1)^1$ como mostra a Equação 4:

$$R_{L} = \frac{1}{1 + K_{L}C_{0}} \tag{4}$$

Valores de $R_L>1$ indicam que o processo é desfavorável, $R_L=1$ indica uma isoterma linear, $0 < R_L < 1$ indica que o processo é favorável e $R_1 = 0$ indica que o processo é irreversível⁵.

A isoterma de Freundlich é utilizada para sistemas com superfície heterogênea, onde ocorre adsorção em multicamadas com interação entre as moléculas de adsorbato^{20,21} e é apresentada na Equação 5:

$$q_e = k_F C_e^{1/n}$$
(5)

onde, $k_{\rm F}$ é a constante de Freundlich ((mg g^{-1})(L mg^{-1})^{1/n}) e 1/n é o fator de heterogeneidade.

A isoterma de Redlich-Peterson é usada para representar o equilíbrio de adsorção em uma ampla faixa de concentrações e pode ser aplicada em sistemas homogêneos e heterogêneos, devido sua versatilidade.^{1,22} O modelo de Redlich-Peterson é apresentado na Equação 6:

$$q_{e} = \frac{k_{R}C_{e}}{1 + a_{R}C_{e}^{\beta}}$$
(6)

onde, k_R e a_R são as constantes de Redlich-Peterson (L mg^-1) e (L mg^-1) $^\beta$ e β é o expoente que varia de 0 a $1.^{22}$

A isoterma de Temkin contém um fator que mostra como ocorrem as interações entre o adsorbato e o adsorvente. Esta isoterma assume que o calor de adsorção de todas as moléculas que recobrem o adsorvente diminui linearmente em função do recobrimento, devido a interações adsorbato-adsorbato e, a adsorção é caracterizada por uma distribuição uniforme de energias de ligação.^{23,24} A isoterma de Temkin é representada pela Equação 7:

$$q_{e} = \frac{RT}{b} \ln(k_{T}C_{e})$$
(7)

onde, k_T é a constante de equilíbrio de ligação (L mg⁻¹), b é o calor de adsorção, R é a constante universal dos gases (8,314 J K⁻¹ mol⁻¹) e T é a temperatura (K).

Outra equação utilizada para a análise de isotermas foi proposta por Dubinin e Radushkevich:²⁵

$$q_e = q_s \exp(-B\epsilon^2) \tag{8}$$

onde, q_s é a constante de Dubini-Radushkevic (mg g⁻¹) e ϵ é definido na Equação 9:

$$\varepsilon = \operatorname{RTln}(1 + \frac{1}{C_e}) \tag{9}$$

onde, a constante B (mol² kJ⁻²) é função da energia livre média de adsorção por molécula de adsorbato, E (kJ mol⁻¹) quando este é transferido da fase líquida para a superfície do sólido, como mostrado na Equação 10:

$$E = \frac{1}{\sqrt{2B}}$$
(10)

Os parâmetros das isotermas foram determinados através de regressão não linear utilizando o software Statistic 6.0 (StatSoft, USA.). A qualidade do ajuste foi verificada de acordo com o coeficiente de determinação (R²) e erro médio relativo, Equação 11:

$$EMR = \frac{100}{n} \sum_{1}^{n} \frac{|q_{,exp} - q_{,obs}|}{q_{,obs}}$$
(11)

onde, $q_{exp} = q_{obs}$ são os valores experimentais e estimados pelo modelo, respectivamente.

Termodinâmica de adsorção

As características termodinâmicas da adsorção foram expressas

em diferentes temperaturas e concentrações, através das variações de entropia, entalpia e energia livre de Gibbs, com o objetivo de verificar os possíveis mecanismos de adsorção.⁵ A energia livre de Gibbs pode ser calculada pela Equação 12:

$$\Delta G = -RT \ln k_{\rm D} \tag{12}$$

onde, k_D é a constante de equilíbrio termodinâmico (L g⁻¹). k_D pode ser obtido plotando-se q_e/C_e versus q_e e extrapolando q_e para zero.²³

De acordo com a termodinâmica, a energia livre de Gibbs é a diferença entre a variação da entalpia de adsorção (Δ H) e a variação da entropia de adsorção (Δ S), a uma temperatura constante.²³ Aplicando este conceito na Equação 12, os parâmetros termodinâmicos Δ H e Δ S podem ser determinados de acordo com a Equação 13:

$$\ln k_{\rm D} = -\frac{\Delta H}{RT} + \frac{\Delta S}{R}$$
(13)

onde, R é a constante universal dos gases (8,314 J mol⁻¹ K⁻¹) e T é a temperatura (K).

RESULTADOS E DISCUSSÃO

Escolha do adsorvente

A Figura 1 apresenta os percentuais de remoção dos corantes (a) azul brilhante, (b) amarelo crepúsculo e (c) amarelo tartrazina, em relação ao tipo de adsorvente e ao pH.

Na Figura 1 podem-se observar três aspectos principais: a influência do pH em relação ao comportamento do adsorvente; a influência do corante em relação ao percentual de remoção e, a influência do tipo de adsorvente no percentual de remoção de corante.

Para todos os corantes estudados, os percentuais de remoção relativos ao carvão ativado e à terra diatomácea não foram influenciados pelo pH (Figura 1). Provavelmente, este comportamento é devido ao carvão ativado e à terra diatomácea possuírem estrutura inerte, com ausência de grupos reativos, sendo então a adsorção de natureza física e independente do pH.^{9,26} Por outro lado, as eficiências da quitina, da quitosana e da terra ativada foram largamente influenciadas pelo pH. Este comportamento pode ser explicado devido a estes adsorventes possuírem grupos reativos na sua estrutura (quitina e quitosana possuem grupos amino e hidroxila e a terra ativada possui grupamentos ácidos na superfície). De acordo com Gupta e Suhas,² estes grupos pode ser protonados ou desprotonados dependendo do pH do meio, fato que pode causar mudanças na eficiência de adsorção.

Para todos os adsorventes estudados pode-se observar, na Figura 1, que o aumento da massa molar dos corantes causou uma diminuição no percentual de remoção. Isto ocorreu, pois, um aumento na massa molar, na cadeia carbônica e uma estrutura mais ramificada causam dificuldade na difusão do corante.^{5,6} Este comportamento foi observado por Cestari e colaboradores,⁶ na adsorção de corantes aniônicos por esferas de quitosana. Em seu estudo, mostraram que a adsorção de corantes por quitosana é influenciada pelas dimensões das cadeias carbônicas dos corantes, quantidade e posicionamento dos grupamentos sulfonados.

Os maiores percentuais de remoção dos corantes foram observados em meio ácido, particularmente em pH 3 (Figura 1). Em pH 3 a quitosana foi o melhor adsorvente para os três corantes estudados, seguida pelo carvão ativado, quitina, terra diatomácea e terra ativada. Isto ocorreu, pois, em pH 3, o corante é primeiramente dissolvido e os grupamentos sulfonados são dissociados e convertidos em anions; em seguida, na presença de H+, os amino grupos da quitosana são

Figura 1. Comparação dos percentuais de remoção dos adsorventes em diferentes valores de pH: (a) azul brilhante, (b) amarelo crepúsculo, (c) amarelo tartrazina

protonados e, finalmente, o processo de adsorção ocorre devido à atração eletrostática destes íons de cargas opostas.⁵

A interação química quitosana-corante em meio ácido foi reportada por Cheung e colaboradores,¹¹ estudando a adsorção de corantes ácidos. Eles confirmaram a interação entre os amino grupos da quitosana e os grupamentos sulfonados dos corantes. Os menores percentuais de remoção dos outros adsorventes podem ser explicados pela ausência de grupos reativos no carvão ativado, causando a adsorção física, a qual é menos efetiva que a interação química quitosana-corante.^{3,4}

A quitina possui menos amino grupos em relação à quitosana (o grau de desacetilação da quitina é $45 \pm 1\%$ e o da quitosana é $85 \pm 1\%$), portanto, o percentual de remoção foi menor. O baixo percentual de remoção da terra diatomácea pode ser explicado pela sua estrutura inerte (alto percentual de sílica) e baixa área superficial específica.⁹ Apesar da alta porosidade da terra ativada,¹⁰ esta possui grupos ácidos na superfície,¹⁰ os quais podem ter causado a repulsão dos grupamentos sulfonados dos corantes, explicando o baixo percentual de remoção deste material.

De acordo com Crini e Badot,⁵ a escolha do melhor adsorvente depende de diversos fatores, incluindo a estrutura química do corante e o pH. Cada adsorvente possui vantagens e desvantagens. Nesta pesquisa, os resultados mostraram que, para todos os corantes investigados, a quitosana foi o melhor adsorvente, preferencialmente em pH 3, apresentando percentuais de remoção de 50, 90 e 80% para os corantes azul brilhante, amarelo crepúsculo e amarelo tartrazina, respectivamente.

Isotermas de adsorção

Como a quitosana em pH 3 foi o melhor adsorvente para todos os corantes, as isotermas de equilíbrio foram construídas nesta condição. Com o intuito de verificar o efeito da temperatura, as isotermas foram obtidas na faixa de 298 até 328 K. A Figura 2 apresenta os dados experimentais de equilíbrio em todas as temperaturas estudadas para os corantes (a) azul brilhante, (b) amarelo crepúsculo e (c) amarelo tartrazina, respectivamente.

Na Figura 2 pode-se observar que as curvas de equilíbrio apresentaram uma etapa inicial de aumento na capacidade de adsorção (indicando a grande afinidade entre a quitosana e os corantes e o grande números de sítios acessíveis), seguida de um platô, representando a máxima capacidade de saturação na monocamada. Isto confirma a formação de uma camada de corante sobre a superfície das partículas de quitosana. Para todos os corantes estudados o aumento da temperatura causou uma diminuição na capacidade de adsorção (Figura 2). Isso ocorreu devido à adsorção de corantes por quitosana em meio ácido ser um processo exotérmico.⁵ Efeito similar foi observado na adsorção de índigo carmim por quitosana⁸ e na adsorção de vermelho congo por hidroesferas de quitosana.⁷

Para estabelecer a correlação mais adequada para as curvas de equilíbrio e estimar os parâmetros das isotermas, os modelos de Langmuir, Freundlich, Redlich-Peterson, Temkin e Dubinin-Radushkevich foram ajustados aos dados experimentais. A Tabela 2 apresenta os parâmetros das isotermas e a qualidade do ajuste para a adsorção dos corantes azul brilhante, amarelo crepúsculo e amarelo tartrazina em todas as temperaturas estudadas.

Os valores do coeficiente de determinação ($R^2 > 0.98$) e do erro médio relativo (EMR < 5%) apresentados na Tabela 2 demonstram que o modelo de isoterma de Langmuir foi o que apresentou o melhor ajuste aos dados experimentais de equilíbrio. Isso mostra que a adsorção dos três corantes estudados ocorreu em sítios homogêneos e específicos da quitosana e indica que a adsorção foi de natureza química. Deste modo, o modelo de isoterma de Langmuir pode ser utilizado para representar os dados experimentais de equilíbrio da adsorção dos corantes estudados por quitosana.

As máximas capacidades de adsorção na monocamada (q_m) foram 1134, 1684 e 1977 mg g⁻¹ para os corantes azul brilhante, amarelo crepúsculo e amarelo tartrazina, respectivamente, obtidos à 298 K (Tabela 2). A capacidade máxima de adsorção é influenciada por

Figura 2. Isotermas de equilíbrio de adsorção dos corantes por quitosana: (a) azul brilhante, (b) amarelo crepúsculo, (c) amarelo tartrazina

diversos fatores como, por exemplo, características da quitosana, variáveis do processo, química do corante e condições da solução.⁵ A literatura mostra que o valor de q_m em sistemas de adsorção de corantes por quitosana pode variar entre 50 e 2500 mg g^{-1,1,5,8,11} Em vista disso pode-se afirmar que a quitosana utilizada neste trabalho possui boa capacidade de adsorção.

Tabela 2. Parâmetros das isotermas para os três corantes estudados, em todas as temperaturas

	Azul brilhante Temperatura (K)			Amarelo crepúsculo Temperatura (K)			Amarelo tartrazina					
							Temperatura (K)					
Modelo de isoterma	298	308	318	328	298	308	318	328	298	308	318	328
Langmuir												
k _L x10 ³ (L mg ⁻¹)	6,1	5,6	1,8	4,3	18,4	11,9	8,4	2,5	3,5	3,7	6,9	3,1
$q_m(mg g^{-1})$	1134	1077	1070	595	1684	1627	1612	1602	1977	1878	1208	961
R _L	0,25	0,26	0,51	0,29	0,14	0,19	0,23	0,46	0,41	0,39	0,24	0,37
\mathbb{R}^2	0,994	0,994	0,998	0,989	0,999	0,998	0,986	0,996	0,984	0,981	0,994	0,994
EMR (%)	2,5	2,9	1,4	4,9	0,8	1,6	4,0	3,0	4,7	4,6	2,7	2,9
Freundlich												
$k_{F}((mg g^{-1})(L mg^{-1})^{1/n})$	49,2	43,3	9,8	19,2	193,5	125,3	91,6	17,9	27,5	29,9	60,3	17,5
n	2,1	2,1	1,5	2,0	2,8	2,4	2,2	1,5	1,6	1,6	2,2	1,8
\mathbb{R}^2	0,968	0,966	0,992	0,957	0,961	0,967	0,948	0,965	0,945	0,937	0,965	0,960
EMR (%)	8,2	8,5	4,7	11,4	8,9	9,0	10,3	9,1	18,6	19,9	8,4	9,0
Redlich-Peterson												
$k_{R} (L mg^{-1})$	9,5	7,8	6,2	19,3	29,5	18,2	14,2	6,8	7,9	8,3	9,8	2,9
$a_R (L mg^{-1})^{\beta}$	0,027	0,024	0,240	0,760	0,184	0,119	0,084	0,059	0,010	0,018	0,018	0,031
β	0,82	0,81	0,44	0,54	1,00	1,00	1,00	0,60	0,85	0,77	0,87	1,00
\mathbb{R}^2	0,988	0,987	0,994	0,961	0,999	0,999	0,985	0,991	0,968	0,960	0,991	0,994
EMR (%)	4,7	4,6	3,8	11,0	0,8	1,6	5,3	5,3	13,6	14,5	3,5	2,9
Temkin												
$k_T(L mg^{-1})$	0,05	0,05	0,02	0,03	0,18	0,11	0,07	0,03	0,04	0,04	0,06	0,03
RT/b	263	246	237	140	362	364	400	333	405	389	270	205
R ²	0,987	0,986	0,964	0,989	0,992	0,991	0,975	0,974	0,960	0,954	0,985	0,975
EMR (%)	3,7	3,9	10,5	2,9	2,3	3,1	5,2	9,3	16,1	15,7	4,6	6,7
Dubinin-Radukshevic												
$q_{s}(mg g^{-1})$	771	719	618	393	1308	1178	1196	863	1089	1075	835	564
B (mol ² kJ ⁻²)	0,0042	0,0046	0,0120	0,0070	0,0008	0,0013	0,0022	0,0080	0,0070	0,0065	0,0032	0,0086
E (kJ mol ⁻¹)	11,0	10,4	6,4	8,5	25,0	19,6	15,1	7,9	8,5	8,7	12,5	7,6
\mathbb{R}^2	0,868	0,877	0,872	0,931	0,843	0,851	0,911	0,904	0,941	0,945	0,852	0,867
EMR (%)	15,8	15,4	19,8	12,4	14,9	16,9	12,9	17,6	20,0	19,0	16,5	16,9

O parâmetro k_L do modelo de Langmuir, que corresponde ao inverso da concentração na fase líquida onde a capacidade de adsorção é 0,5 q_m, mostrou que maiores valores de saturação na monocamada (q_m) foram obtidos em maiores concentrações de equilíbrio (C_e), o que resulta na presença de uma maior quantidade de corante na solução final.

O fator de separação R_L da isoterma de Langmuir variou de 0,14 a 0,51 (Tabela 2), mostrando que a adsorção dos três corantes estudados é um processo favorável.

Termodinâmica de adsorção

A Tabela 3 apresenta os valores destes parâmetros para o processo de adsorção.

Na Tabela 3 podem-se observar valores negativos de ΔG (de -8,52 a -2,24 kJ mol⁻¹) indicando que a adsorção dos três corantes estudados sobre quitosana foi um processo espontâneo e favorável. Além disso, o aumento de ΔG em função do aumento da temperatura indica que a adsorção ocorre mais facilmente em baixas temperaturas. Comportamento semelhante foi obtido por Cestari e colaboradores,²⁷

na adsorção de índigo carmim sobre *cross-linked* quitosana. Eles obtiveram valores de ΔG entre -16,4 e -5,8 kJ mol⁻¹ e assumiram que valores nesta faixa são consequência da difusão do corante na estrutura da quitosana.

Valores negativos de Δ H (Tabela 3) confirmam a natureza exotérmica do processo de adsorção. De acordo com Crini e Badot,⁵ valores de entalpia de adsorção na faixa de -40 a -800 kJ mol⁻¹ caracterizam adsorção química. Os valores negativos de Δ S (Tabela 3) indicam que a desordem na interface sólido-líquido diminuiu durante o processo da adsorção. Os valores negativos de Δ H e Δ S sugerem que a entalpia contribuiu mais que a entropia para a obtenção de valores negativos de Δ G. Um comportamento termodinâmico similar foi obtido por Anjos e colaboradores,⁸ na adsorção de índigo carmim por quitosana.

CONCLUSÃO

Neste trabalho foram comparados quitosana, carvão ativado, terra ativada, quitina e terra diatomácea como adsorventes para a remoção dos corantes azul brilhante, amarelo crepúsculo e amarelo tartrazina de soluções aquosas com diferentes pHs. Os resultados apresenta-

Corante	Temperatura (K)	$\Delta G (kJ mol^{-1})$	$\Delta H (kJ mol^{-1})$	$\Delta S (kJ mol^{-1} K^{-1})$	
	298	$-4,78 \pm 0,01$			
A 11 11 /	308 -4,56 ± 0,01 24.2 ± 0		24.2 + 0.0	0.10 - 0.01	
Azul brilhante	318	$-2,39 \pm 0,02$	$-34,2 \pm 0,9$	$-0,10 \pm 0,01$	
	328	$-2,24 \pm 0,01$			
	298	$-8,52 \pm 0,02$			
A	308	$-7,59 \pm 0,02$	517.10	-0.14 ± 0.01	
Amarelo crepusculo	318	$-6,98 \pm 0,01$	$-51,7 \pm 1,2$		
	328	$-3,85 \pm 0,03$			
	298	$-7,23 \pm 0,02$		0.12 - 0.01	
A	308	$-5,75 \pm 0,01$	45.4.07		
Amareio tartrazina	318	$-5,61 \pm 0,01$	-45,4 ± 0,7	$-0,13 \pm 0,01$	
	328	$-2,97 \pm 0,03$			

Tabela 3. Parâmetros termodinâmicos

dos mostraram que a quitosana em pH 3 foi o melhor adsorvente para todos os corantes, removendo 50, 90 e 80% dos corantes azul brilhante, amarelo crepúsculo e amarelo tartrazina, respectivamente.

Utilizando quitosana em pH 3, foram realizados estudos de equilíbrio em diferentes temperaturas (298 a 328 K) e os modelos de Langmuir, Freundlich, Redlich-Peterson, Temkin e Dubinin-Radushkevich foram ajustados aos dados experimentais. Foi observado que o aumento da temperatura causou uma diminuição na capacidade de adsorção. O modelo de Langmuir apresentou o melhor ajuste com os dados experimentais (R²>0,98 e EMR<5%) e as máximas capacidades de adsorção na monocamada foram 1134, 1684 e 1977 mg g⁻¹ para os corantes azul brilhante, amarelo crepúsculo e amarelo tartrazina, respectivamente, obtidas a 298 K.

O comportamento termodinâmico da adsorção para os três corantes foi avaliado de acordo com a entalpia, entropia e energia livre de Gibbs. Valores negativos de ΔG , $\Delta H e \Delta S$ mostraram que a adsorção dos três corantes por quitosana foi exotérmica, espontânea, favorável, e que a desordem do sistema diminuiu durante o processo de adsorção.

MATERIAL SUPLEMENTAR

Está disponível em http://quimicanova.sbq.org.br, na forma de arquivo PDF, com acesso livre. As características das partículas adsorventes são muito importantes para auxiliar na explicação de como ocorrem as interações adsorvente/adsorbato. O material suplementar fornece algumas características importantes relativas às partículas adsorventes utilizadas (Tabela 1S).

AGRADECIMENTOS

À CAPES (Coordenação de aperfeiçoamento de pessoal de nível superior) e ao CNPQ (conselho nacional de desenvolvimento científico e tecnológico) pelo apoio financeiro.

REFERÊNCIAS

- Piccin, J. S.; Vieira, M. L. G.; Gonçalves, J.; Dotto, G. L.; Pinto, L. A. A.; *J. Food Eng.* **2009**, *95*, 16.
- 2. Gupta, V. K.; Suhas; J. Environ. Manage. 2009, 90, 2313.
- 3. Sanghi, R.; Bhattacharya, B.; Color. Technol. 2002, 118, 256.
- 4. Srinivasan, A.; Viraraghavan, T.; J. Environ. Manage. 2010, 91, 1915.
- 5. Crini, G.; Badot, P. M.; Prog. Polym. Sci. 2008, 33, 399.

- Cestari, A. R.; Vieira, E. F. S.; Santos, A. G. P.; Mota, J. A.; Almeida, V. P.; *J. Colloid Interface Sci.* 2004, 280, 380.
- Chatterjee, S.; Chatterjee, S.; Chatterjee, B. P.; Guha, A. K.; *Colloids Surf.*, A 2007, 299, 146.
- Anjos, F. S. C.; Vieira, E. F. S.; Cestari, A. R.; J. Colloid Interface Sci. 2002, 253, 243.
- 9. Erdem, E.; Çölgeçen, G.; Donat, R.; J. Colloid Interface Sci. 2005, 282, 314.
- Tsai, W.; Chang, C. Y.; Ing, C. H.; Chang, C. F.; J. Colloid Interface Sci. 2004, 275, 72.
- 11. Cheung, W. H.; Szeto, Y. S.; McKay, G.; *Bioresour. Technol.* 2007, 98, 2897.
- Longhinotti, E.; Furlan, L.; Laranjeira, M. C. M.; Fávere, V. T.; Gonçalves, N. S.; *Quim. Nova* **1996**, *19*, 221.
- 13. Lima, I. S.; Ribeiro, E. S.; Airoldi, C.; Quim. Nova 2006, 29, 501.
- Dallago, R. M.; Smaniotto, A.; Oliveira, L. C. A.; *Quim. Nova* 2005, 28, 433.
- Carvalho, T. E. M.; Fungaro, D. A.; Izidoro, J. C.; *Quim. Nova* 2010, *33*, 358.
- Asadullah, M.; Asaduzzaman, M.; Kabir, M. S.; Mostofa, M. G.; Miyazawa, T.; *J. Hazard. Mater.* 2010, *174*, 437.
- Weska, R. F.; Moura, J. M.; Batista, L. M.; Rizzi, J.; Pinto, L. A. A.; *J. Food Eng.* 2007, *80*, 749.
- Cervera, M. F.; Heinamaki, J.; Rasanem, M.; Maunu, S. L.; Karjalainen, M.; Acosta, O. M. N.; Colarte, A. I.; Yliruusi, J.; *Carbohydr. Polym.* 2004, 58, 401.
- Foust, A. S.; Wenzel, L. A.; Clump, C. W.; Maus, L.; Andersen, L. B.; *Principles of unit operations*, 2nd ed., John Wiley & Sons: New York, 1980.
- Massarani, G.; Fluidodinâmica em Sistemas Particulados, Editora UFRJ: Rio de Janeiro, 1997.
- 21. Sing, K. S. W.; Everett, D.H.; Haul, R. A. W.; *Pure Appl. Chem.* **1985**, *57*, 603.
- Hameed, B. H.; Mahmoud, D. K.; Ahmad, A. L.; J. Hazard. Mater. 2008, 158, 499.
- 23. Hamdaoui, O.; Naffrechoux, E.; J. Hazard. Mater. 2007, 147, 381.
- 24. Hamdaoui, O.; Naffrechoux, E.; J. Hazard. Mater. 2007, 147, 401.
- Demiral, H.; Demiral, E.; Tumsek, F.; Karabacakoglu, B.; *Chem. Eng.* J. 2008, 144, 188.
- 26. Demirbas, A.; J. Hazard. Mater. 2009, 167, 1.
- Cestari, A. R.; Vieira, E. F. S.; Tavares, A. M. G.; Bruns, R. E.; J. Hazard. Mater. 2008, 153, 566.