# AUTHENTICITY STUDY OF *Phyllanthus* SPECIES BY NMR AND FT-IR TECHNIQUES COUPLED WITH CHEMOMETRIC METHODS<sup>#</sup>

#### Maiara S. Santos\*, Edenir R. Pereira-Filho e Antonio G. Ferreira

Departamento de Química, Universidade Federal de São Carlos, CP 676, 13560-970 São Carlos – SP, Brasil Elisangela F. Boffo

Instituto de Química, Universidade Federal da Bahia, 40170-115 Salvador – BA, Brasil **Glyn M. Figueira** 

Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, CP 6171, 13081-970 Campinas – SP, Brasil

## MODELS OPTIMIZATION

#### FT-IR data

The parameters used in the models optimization were:

- in the KNN model, K = 1 was selected because with this value there are no prediction errors;
- in the SIMCA model, two PCs were selected for all categories because they obtained more than 85% of information from the data analyzed in all classes: 93.4% for *P. amarus*, 85.0% for *P. caroliniensis*, 88.4% for *P.niruri*, 87.7% for *P. tenellus* and 91.6% for *P. urinaria*.

The PLS-DA loadings for the calibration models were similar to those observed in the PCA analysis. In this model, 5 PCs were used for the *P. amarus, P. niruri, P. tenellus* and *P. urinaria* classes, whereas 4 PCs were used for the *P. caroliniensis* with SEC, SEV and PRESS Val less than 0.153, 0,211 and 1.787, respectively, and R<sup>2</sup> greater than 0.854. The calibration statistics indicated that the model developed could be acceptable to classify new samples.

### <sup>1</sup>H HR-MAS NMR data

The parameters used in the models optimization were:

- in the KNN method, seven prediction errors were obtained with K
  = 1. These errors are due to the proximity between different classes;
- in the SIMCA model, 5 PCs were selected for the *P. amarus* class (96.5%), 4 PCs were used for the *P. caroliniensis* (95.6%) and *P. niruri* (86.8%) classes, whereas three PCs were used for the *P. tenellus* (84.3%) and *P. urinaria* (86.6%) classes.

Considering the PLS-DA model, 3 PCs were used for the *P. amarus*, 4 for the *P. caroliniensis* and *P. niruri*, whereas 6 PCs were used for *P. tenellus* and *P. urinaria* classes with SEC, SEV and PRESS Val less than 0.118, 0.151 and 1.202, respectively, and R<sup>2</sup> greater than 0.756.

#### Liquid state NMR - aqueous extracts

The parameters used in the models optimization were:

- in the KNN methods, K = 1 was selected because with this value there are no prediction errors (sets A and B).
- in the SIMCA method from set A, 3 PCs were used for the *P. amarus* (85.3%), *P. caroliniensis* (86.0%) and *P. tenellus* (86.8%) classes and 2 PCs were used for the *P. niruri* (79.4%) and *P. urinaria* (78.2%) classes.
- for the SIMCA method from set B, 4 PCs were used for the *P. amarus* (78.3%) and *P. tenellus* (77.8%) classes, whereas for the *P. caroliniensis* (86.3%), *P. niruri* (76.6%) and *P. urinaria* (83.5%) classes 3 PCs were used.

\*e-mail: maiarassantos@yahoo.com.br

\*Artigo em homenagem ao Prof. Otto R. Gottlieb (31/8/1920-19/6/2011)

Considering the PLS-DA model from set A, 3 PCs were used for the *P. amarus* class, 5 PCs were used for the *P. caroliniensis* and *P. urinaria* classes and 2 PCs were used for the *P. tenellus* and *P. niruri* classes with SEC, SEV and PRESS Val less than 0.072, 0.101 and 0.410, respectively, and R<sup>2</sup> greater than 0.973.

In the PLS-DA model from set B, 4 PCs were used for the *P. amarus, P. caroliniensis, P. tenellus* and *P. niruri* classes and 6 PCs were used for the *P. urinaria* class with SEC, SEV and PRESS Val less than 0.081, 0.135 and 1.347, respectively, and R<sup>2</sup> greater than 0.923.

### RESULTS

Table 1S. <sup>1</sup>H and <sup>13</sup>C NMR data for compounds in the *Phyllanthus* aqueous extract

| Compound                      | $\delta^{13}C$ | $\delta^{1}$ H (multiplicity, J in Hz) |
|-------------------------------|----------------|----------------------------------------|
| α-Glucose (α-Glu)             |                |                                        |
| C <sup>1</sup> H              | 95.0           | 5.24 ( <i>d</i> , 3.7)                 |
| $C^{2}H$                      | 74.0           | 3.55 ( <i>m</i> )                      |
| β-Glucose (β-Glu)             |                |                                        |
| $C^{1}H$                      | 98.8           | 4.65 ( <i>d</i> , 7.9)                 |
| $C^{2}H$                      | 77.1           | 3.25 ( <i>m</i> )                      |
| C <sup>3</sup> H              | 72.1           | 3.50 ( <i>m</i> )                      |
| $C^{4}H$                      | 72.6           | 3.41 ( <i>m</i> )                      |
| Sucrose (Suc)                 |                |                                        |
| $C^{1}H$                      | 95.1           | 5.42 ( <i>d</i> , 3.8)                 |
| $C^{2}H$                      | 74.1           | 3.57 ( <i>m</i> )                      |
| $C^{3}H$                      | 75.5           | 3.78 ( <i>m</i> )                      |
| $C^4H$                        | 72.5           | 3.48 ( <i>m</i> )                      |
| C <sup>6</sup> H <sub>2</sub> | 63.0           | 3.86 ( <i>m</i> )                      |
| $C^{1'}H_2$                   | 64.2           | 3.68 ( <i>m</i> )                      |
| C²'H                          | 106.6          |                                        |
| C <sup>3</sup> 'H             | 79.3           | 4.22 ( <i>d</i> , 8.7)                 |
| $C^{4'}H$                     | 75.3           | 4.07 ( <i>m</i> )                      |
| C <sup>5</sup> H              | 84.3           | 3.90 ( <i>m</i> )                      |
| Alanine                       |                |                                        |
| α-CH                          |                | 3.79 ( <i>m</i> )                      |
| $\beta$ -CH <sub>3</sub>      | 19.1           | 1.48 ( <i>d</i> , 7.2)                 |
| Valine                        |                |                                        |
| γ-CH <sub>3</sub>             |                | 1.00 ( <i>d</i> , 7.0)                 |
| $\gamma$ '-CH <sub>3</sub>    | 19.3           | 1.05 ( <i>d</i> , 7.0)                 |
| β-CH                          | 35.4           | 2.28 (m)                               |
| Threonine                     |                |                                        |
| $\alpha$ -CH <sub>2</sub>     |                | 3.52 ( <i>m</i> )                      |
| γ-CH <sub>3</sub>             | 24.0           | 1.33 ( <i>d</i> , 6.6)                 |
| β-CH                          |                | 4.27 ( <i>m</i> )                      |
| 4-aminobutiric acid           |                |                                        |
| $\gamma$ -CH <sub>2</sub>     | 35.5           | 3.02 ( <i>t</i> , 7.5)                 |
| $\alpha$ -CH <sub>2</sub>     | 26.7           | 2.32 ( <i>m</i> )                      |
| $\beta$ -CH <sub>2</sub>      | 42.6           | 1.94 ( <i>m</i> )                      |

Abbreviations: d – doublet, t – triplet, m – multiplet

| Position   | $\delta^{1}$ H (multiplicity, J in Hz) | $\delta$ <sup>13</sup> C | <sup>1</sup> H- <sup>13</sup> C gHMBC* | Literature <sup>37</sup> |                   |
|------------|----------------------------------------|--------------------------|----------------------------------------|--------------------------|-------------------|
|            |                                        |                          |                                        | δ¹H                      | δ <sup>13</sup> C |
| 1 (1')     | -                                      | 136.1                    | -                                      | -                        | 135.2             |
| 2 (2')     | 6.56 ( <i>d</i> , 1.96)                | 113.8                    | 7 (7'); 6 (6'); 3 (3')                 | 6.59                     | 112.2             |
| 3 (3')     | -                                      | 150.3                    | -                                      | -                        | 148.7             |
| 4 (4')     | -                                      | 148.6                    | -                                      | -                        | 147.0             |
| 5 (5')     | 6.78 ( <i>d</i> , 8.02)                | 112.9                    | 4 (4'); 1 (1'); 6 (6')                 | 6.73                     | 111.0             |
| 6 (6')     | 6.59 (dd, 8.02; 1.96)                  | 122.6                    | 3 (3'); 1 (1'); 7 (7'); 5 (5')         | 6.61                     | 121.0             |
| 7 or (7')  | 2.56 ( <i>dd</i> , 15.7; 7.25)         | 36.0                     | 1 (1'); 2 (2'); 5 (5'); 9 (9'); 8 (8') | 2.59                     | 34.9              |
|            | 2.58 (dd, 15.7; 7.25)                  |                          |                                        | 2.66                     |                   |
| 8 (8')     | 1.98 ( <i>m</i> )                      | 41.9                     | 1 (1'); 6 (6'); 9 (9'); 7 (7')         | 2.01                     | 40.7              |
| 9 (9')     | 3.29                                   | 74.0                     | 7 (7'); 8 (8'); 9 (9')-MeO             | 3.25                     | 72.8              |
|            | 3.41                                   |                          |                                        | 3.28                     |                   |
| 3 (3')-MeO | 3.70 (s)                               | 56.3                     | 3 (3')                                 | 3.78                     | 55.9              |
| 4 (4')-MeO | 3.79 (s)                               | 56.5                     | 4 (4')                                 | 3.82                     | 55.7              |
| 9 (9')-MeO | 3.30 (s)                               | 59.0                     | 9 (9')                                 | 3.27                     | 58.7              |

Table 2S. <sup>1</sup>H, <sup>13</sup>C and gHMBC NMR data for phyllanthin

Abbreviations: *s* – singlet, *d* –doublet, *dd* – doublet of doublet, *m* – multiplet. \**g*HMBC data set: the numbers correspond to the correlated carbons.



Figure 1S. Phyllanthin structure



Figure 2S. FT-IR spectra of all samples analyzed, showing selected regions used in statistical analyses (in white)



Figure 3S. HCA dendrogram obtained from FT-IR data of five standard samples of Phyllanthus species (similarity index: 0.487)



*Figure 4S.* PCA score plots of five standard samples of Phyllanthus species (aerial parts, leaves and stems separately) analyzed by FT-IR: (a) PC1 x PC2 (b) PC2 x PC3. The samples composed of only leaves were circled with a dashed line and samples composed of only stems were circled with squares



Figure 5S. <sup>1</sup>H HR-MAS NMR spectra of all samples analyzed, showing the selected regions used in the statistical analysis (in white)



Figure 6S. HCA dendrogram obtained from <sup>1</sup>H HR-MAS NMR data of five standard samples of Phyllanthus species (similarity index: 0.591)



Figure 7S. PCA score plots of five standard samples of Phyllanthus species (aerial parts, leaves and stems separately) analyzed by <sup>1</sup>H HR-MAS NMR



Figure 8S. <sup>1</sup>H NMR spectra of all samples analyzed (aqueous extracts), showing the selected regions used in the statistical analyses (in white)



Figure 9S. HCA dendrogram obtained from <sup>1</sup>H NMR (aqueous extracts) data of five standard samples of Phyllanthus species (similarity index: 0.510)



Figure 105. <sup>1</sup>H NMR spectra of all samples analyzed (ethanolic extracts), showing the selected regions used in the statistical analysis (in white)