PREPARAÇÃO DO COMPOSTO DE ASSOCIAÇÃO ENTRE CITRATO DE RÓDIO(II) E β-CICLODEXTRINA

Ana E. Burgos* e Coco K. Y. A. Okio

Departamento de Química, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, Colombia **Rubén D. Sinisterra**

Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte - MG, Brasil

Recebido em 14/7/11; aceito em 15/10/11; publicado na web em 23/1/12

PREPARATION OF ASSOCIATION COMPOUND BETWEEN RHODIUM(II) CITRATE AND β -CYCLODEXTRIN. Inclusion compound of rhodium(II) citrate with β -cyclodextrin in a 1:1 molar ratio was prepared using freeze-drying method. X-ray diffactometry, thermal analysis (TG/DTG/DSC), infrared and ¹H-NMR with ¹H spin lattice relaxation (¹H T_i) measurements and ¹³C techniques were used to characterize the system prepared. The results indicated the formation of inclusion or association compounds between rhodium(II) citrate and β -cyclodextrin.

Keywords: β-cyclodextrin; rhodium(II) carboxylates; inclusion compounds.

INTRODUÇÃO

Os carboxilatos de ródio(II) apresentam atividade antitumoral, essa propriedade foi demostrada pela primeira vez por Bear em 1972.¹⁻⁴ Estes complexos fazem parte da segunda geração de compostos de metais de transição com atividade antitumoral.⁵⁻¹⁰ Uma maior atividade anticancerígena tem sido observada quando a cadeia lipofílica dos carboxilatos de ródio(II) é aumentada. Porém, esse aumento pode provocar também diminuição da solubilidade aquosa e aumento de toxicidade desses compostos.¹¹⁻¹⁶

Visando diminuir a toxicidade, aumentar a atividade farmacológica ou diminuir a solubilidade do complexo, o presente trabalho teve como objetivo a preparação e caracterização do composto de inclusão e/ou associação do citrato de ródio(II) com β -ciclodextrina (β -CD).

As ciclodextrinas são oligossacarídeos cíclicos formados por unidades de glicose unidas entre si por ligações a $(1 \rightarrow 4)$, obtidas a partir da degradação enzimática do amido.¹⁷

As ciclodextrinas mais comuns são α -CD, β -CD e γ -CD, formadas por 6, 7 e 8 unidades de glucopiranose, respectivamente. As ciclodextrinas apresentam uma estrutura em forma de cone truncado.^{18,19} Este tipo de estrutura proporciona uma cavidade hidrofóbica, o que permite incluir as mais variadas moléculas em solução e/ou em fase sólida.¹⁸⁻²⁵ Quando formam compostos de inclusão, podem modificar as propriedades físico-químicas e biológicas de moléculas hóspedes.^{15,18-25}

PARTE EXPERIMENTAL

Preparação do composto de associação com β-CD

A composição química do citrato de Rh(II) foi confirmada pela análise elementar (CHN). Estes resultados concordam com os obtidos por outros autores^{1,4,6,12,14,18} e sugerem a obtenção do complexo Rh₂C₂₄H₃₂O₃₀, correspondente ao composto tetra- μ -citrato de ródio(II), Rh₂(Cit)₄.

Este complexo foi sintetizado por métodos modificados, relatados na literatura,^{1,4,6,12,18} para ser utilizado como molécula hóspede (*guest*) na preparação do composto de inclusão e/ou associação com β -CD (*host*).

Preparação do composto de associação, [Rh₂(Cit)₄-β-CD]

O composto de associação foi preparado em razão molar 1:1 em solução aquosa. A mistura foi submetida à agitação por 24 h a temperatura ambiente. A solução foi congelada em nitrogênio líquido e liofilizada durante 48 h. Para efeito de comparação foi preparada a mistura mecânica entre o citrato de ródio(II) e a β -CD (Rh₂(Cit)₄, β -CD), na mesma proporção molar que o composto de associação. Estes compostos foram separadamente triturados e depois misturados até se obter um pó homogêneo.

Caracterização dos compostos

A caracterização dos compostos foi realizada através de técnicas de análise físico-química. A análise elementar foi feita em um equipamento Perkin Elmer CHN 2400. Os espectros de absorção na região de infravermelho (IV) foram obtidos em espectrofotômetro FTIR-Galaxy 300 Mattson e em um espectrômetro Perkin Elmer 283B, de resolução 4.000 a 200 cm⁻¹. As curvas TG/DTG foram obtidas em um equipamento Shimadzu TGA-50H. As curvas DSC foram obtidas utilizando-se um equipamento Shimadzu DSC-50. A quantidade de amostra utilizada foi de 2,0 mg para cada uma das análises, em cadinho de alumina e em atmosfera dinâmica de nitrogênio. A velocidade de aquecimento foi de 10 °C min⁻¹. Os difratogramas de raios-X foram obtidos em um aparelho Rigaku Geirgerflex 2037. Utilizou-se tubo de Cu e radiação CuK α = 1.54051, em ângulos de 20 variando de 4 a 60 graus. A velocidade de varredura utilizada foi de 4 ° min⁻¹. Os espectros de RMN de ¹H e ¹³C e demais experimentos para a determinação de tempos de relaxação longitudinal $(T_1^{-1}H)$ em Cross Polarization Magic Angle Spinning, foram obtidos em espectrofotômetros Bruker DRX-200 Avance (200 MHz) e Bruker DRX-400 Avance (400 MHz). Utilizou-se DMSO-d₆ ou D₂O como solvente e TMS como padrão interno.

RESULTADOS E DISCUSSÃO

O espectro de infravermelho do composto de associação e/ ou inclusão parcial, mostrou o afinamento das bandas em 3400 e 1140-1015 cm⁻¹ atribuídas aos estiramentos v(O-H) e v(C-O-C), respectivamente, quando comparado com o espectro da mistura mecânica e β -CD (Figuras 1c e 1a). Além disso, as bandas da β -CD em torno de 1640 e 1300-1400 cm⁻¹ atribuídas as δ (O-H) e δ (C-H) não são observadas.^{16,18,26-28} Quando comparados os espectros de composto de associação e a mistura mecânica (Figuras 1c e 1d), observa-se um afinamento e diminuição da intensidade das bandas no composto de associação dos estiramentos $v_{ass}(COO^{-}) e v_s(COO^{-})$ do citrato de Rh(II), atribuídos às possíveis formações de ligações de hidrogênio entre estes grupos e a β -CD. O afinamento dessa banda sugere a quebra de ligações de hidrogênio β-CD-β-CD quando o composto de associação, citrato de Rh(II)-B-CD, é formado. Além disso, observa-se que no espectro do composto de associação, a banda em 1725 cm⁻¹, característica da frequência de estiramento da carbonila v(C=O) no ácido, sofreu um deslocamento para 1700 cm^{-1} , a banda em 1412 cm^{-1} , característica de v_{scoor} também sofreu deslocamento, indo para 1387 cm⁻¹, e a banda da β-CD em 1640 cm^{-1} que corresponde ao modo de deformação (δ) das moléculas de água não foi observada neste espectro. Essas moléculas estão localizadas na cavidade como águas de inclusão e entre as moléculas de ciclodextrinas, como águas intersticiais, mantendo a estrutura cristalina da β-CD. A banda do citrato de Rh(II) a 1225 cm⁻¹, atribuída a v(O-H), sofreu uma diminuição em sua intensidade. Todas estas mudanças sugerem a formação de um composto de associação entre o citrato e a β -CD.

Figura 1. Espectros de absorção na região de infravermelho (pastilha de KBr) de: a) β -CD, b) Rh₂(Cit)₄, c) mistura mecânica, e d) do respectivo composto de associação

As curvas TG e DTG da β -CD, (Figuras 2D e 3D), mostram dois eventos térmicos bem definidos: o primeiro, devido à saída de aproximadamente sete moléculas de água, entre 30-129 °C. Essas moléculas estão localizadas na cavidade como águas de inclusão e entre as moléculas de ciclodextrinas, como águas intersticiais, mantendo a estrutura cristalina da β -CD.²⁹⁻³¹

Figura 2. Curvas de TG para o $Rh_2(Cit)_4(A)$, para a mistura mecânica (B), para o composto de associação (C) e para a β -CD (D)

A curva termogravimétrica do $Rh_2(Cit)_4$ e a respectiva curva DTG (Figura 3A e 4) mostram duas perdas de massa bem definidas: a primeira, ocorre na faixa de temperatura entre 28 e 122 °C, correspondente à perda de duas moléculas de água, sugerindo a coordenação axial destas moléculas; a segunda, na faixa de temperatura entre 122-420 °C, é devida à termodecomposição do composto. Além do mais, entre 500 e 550 °C, observa-se a estabilidade do composto, devido possivelmente à redução do ródio(II) a Rh(0). Foi observado, na faixa de temperatura entre 550 a 620 °C, um ganho de massa, sugerindo a oxidação de Rh(0) a Rh₂O₃.

Figura 3. Curvas de DTG para a β -CD, o $Rh_2(Cit)_4$, para a mistura mecânica ($Rh_2(Cit)_4$, β -CD) e o composto de associação ($Rh_2(Cit)_4$, β -CD)

A curva de TG (Figura 2B), para a mistura mecânica do citrato de Rh(II), mostra duas perdas de massa. A primeira, ocorre na faixa de temperatura entre 26-150 °C e corresponde à saída de 11 moléculas de água. Duas destas moléculas, possivelmente corresponderiam ao citrato de Rh(II), e sete à β -CD. Uma queda de 78% aproximadamente ocorre em 350 °C, associada à termodecomposição dos compostos. Observou-se também um pequeno ganho de massa, acima de 630 °C,

sugerindo a formação do Rh_2O_3 . Nota-se que o resíduo do composto de associação é termicamente mais estável que o da β -CD e menos estável que da mistura mecânica e bem menos estável que o citrato de Rh(II) (Figura 2).

A curva DSC do composto de associação apresenta um evento endotérmico, correspondente à saída das moléculas de água e outro evento, exotérmico, indicando a formação de novas interações entre o citrato de Rh(II) e a β -CD. As curvas de TG, DTG e DSC, da mistura mecânica do citrato de ródio(II), podem ser interpretadas como uma sobreposição das curvas dos componentes livres.

Figura 4. Curvas de DSC para a β -CD, o Rh₂(Cit)₄, para a mistura mecânica (Rh₂(Cit)₄ β -CD) e o composto de associação (Rh₂(Cit)₄- β -CD)

Difratometria de raios-X

Quando se compara o padrão de difração da β -CD que é um sistema policiristalino (Figura 5a) com o padrão de difração do composto de associação e/ou inclusão parcial (Figura 5d), verificase que o composto de associação apresenta um padrão de difração totalmente amorfo. Tal fato sugere a formação de um composto de associação e/ou inclusão parcial entre o citrato de Rh(II) e a β -CD. Nota-se também que os picos característicos da β -CD desaparecem e não aparecem novos, quando há formação do composto de associação. As interações existentes entre a β -CD e o citrato de Rh(II) são fracas do tipo de van der Waals, interações hidrofóbicas e eletrostáticas ou ligações de hidrogênio.

Por outro lado, quando são comparados os padrões de difração da β -CD (Figura 5a) e da mistura mecânica (Figura 5c), apresentam um comportamento diferente ao composto de associação, podendo-se interpretar como uma superposição dos compostos livres, da β -CD e o citrato de Rh(II). Verifica-se também uma diminuição da intensidade relativa dos sinais da β -CD. Estes resultados sugerem que no estado sólido o citrato de ródio(II) está sofrendo interações fracas com a β -CD, do tipo van der Waals ou ligações de hidrogênio, para formar o composto de associação.

Ressonância magnética nuclear

Os deslocamentos químicos de RMN de 1H (Figura 1S, material

Figura 5. Difratogramas de raios X para a) β -CD_.b) $Rh_2(Cit)_{qr}$ c) mistura mecânica, $(Rh_2(Cit)_{sr}\beta$ -CD) e o composto de associação $(Rh_2(Cit)_{sr}\beta$ -CD)

suplementar) e de ¹³C da β-CD, do composto de associação de citrato de Rh(II), encontram-se relacionados nas Tabelas 1 e 2. As atribuições foram feitas com base nos dados encontrados na literatura.^{16,20,32-34} Comparando-se os deslocamentos químicos dos sinais de 1H para os compostos de associação entre o citrato de ródio(II) e a β-CD, notamse no composto de associação pequenas variações nos valores de δ $(\delta \text{ ppm})$ para os hidrogênios H-1 e H-2, que ficam do lado de fora da cavidade, e para o hidrogênio H-5, que fica dentro da cavidade da β-CD, sugerindo a formação de um composto de associação ou inclusão parcial entre o citrato de ródio(II) e a β-CD. Dados de RMN publicados na literatura sobre compostos de inclusão também exibem pequenos deslocamentos químicos (δ ppm) para os H-3 e H-5 localizados dentro da cavidade, e os H-1, H-2 e H-4 que ficam do lado externo da cavidade da β -CD, donde se conclui que houve a formação de compostos de inclusão parcial.^{16,32-36} O espectro de RMN de ¹³C da β-CD em solução apresenta seis sinais, existe apenas um sinal para cada grupo de carbonos equivalentes devido à rápida interconversão conformacional da estrutura da β -CD. Os deslocamentos químicos dos sinais e suas atribuições estão apresentados na Tabela 2. Esses resultados corroboram com os obtidos por raios-X, IV, curvas TG/ DTG e DSC, onde se sugere a formação do composto de associação e/ou inclusão parcial entre o citrato de ródio(II) e a β -CD.

Medidas de tempos de relaxação longitudinal $(T_1^{-1}H)$

Quando se comparam os tempos de relaxação T_i de ¹H da β -CD livre com os do composto de associação do citrato de ródio(II) (Tabela 3), observaram-se as maiores variações T_i para os hidrogênios pertencentes às hidroxilas OH-6 e para os hidrogênios H-1 e H-4, que ficam do lado de fora da cavidade da β -CD. Também se observou um aumento nos tempos de relaxação T_i para os hidrogênios das hidroxilas OH-3 e OH-2. Assim, as hidroxilas primárias (OH-6), as secundárias (OH-3 e OH-2) e os hidrogênios H-1 e H-4 que ficam do lado de fora da cavidade da β -CD, como o hidrogênio H-3 que fica dentro da cavidade da β -CD também sofreram alterações nos tempos de relaxação spin-rede no composto de associação. Estes

	Tabela 1. Valores de deslocamentos químicos (δ) de hidrogênio para a β-CD e o composto de associação do c	itrato de Rh(II) com β-CD, (400 MHz, DMSO-d
--	--	---

Composto	Η-1(δ)	Η-2(δ)	Η-3(δ)	Η-4(δ)	Η-5(δ)	H-6a,b(δ)
β-CD	4,82	3,29	3,62	3,35	3,55	3,65
$Rh_2(Cit)_4$ - β -CD	4,83(0,01)	3,30(0,01)	3,62	3,35	3,56(0,01)	3,65

Tabela 2. Valores de deslocamentos químicos de ¹³C (δ) para a β-CD e o composto de associação de Rh₂(Cit)₄-βCD (400 MHz, DMSO-d₆)

Composto	C-1	C-2	C-3	C-4	C-5	C-6
β-CD	102,04	72,14	73,16	81,63	72,50	60,04
Rh ₂ (Cit) ₄ -β-CD	101,91	72,02	73,03	81,56	72,40	59,94

resultados obtidos indicam a existência de interações do citrato de ródio(II) tanto por dentro quanto por fora da cavidade da β -CD, através de interações não covalentes como ligações de hidrogênio, interações hidrofóbicas e eletrostáticas ou forças de van der Waals. Sugerindo, assim, a formação de um composto de inclusão parcial e/ou associação entre estes dois compostos.

Tabela 3. Medidas de tempos de relaxação spin–rede de ¹H (T_1) da β-CD, do composto de associação do Rh₂(Cit)₄-βCD (seg), (400 MHz, DMSO-d₆)

Composto	β -CD (T_l)	$Rh_2(Cit)_4$ - β -CD	$D(T_1)$
OH-2	1,181	1,232	0,051
OH-3	1,149	1,208	0,059
H-1	1,081	1,004	0,077
OH-6	1,159	1,263	0,104
H-3	1,035	0,973	0,062
H-4	1,074	1,003	0,071

CONCLUSÕES

Foi preparado um novo composto de associação e/ou inclusão parcial entre o citrato de ródio(II) e β -ciclodextrina em relação molar 1:1.

Os resultados obtidos por RMN a partir das medidas de tempos de relaxação longitudinais de ¹H (T_i), para o citrato de ródio(II) e seu respectivo composto de associação e/ou inclusão parcial, mostraram variações consideráveis, que permitem sugerir a formação do composto de associação entre o citrato de ródio(II) e β-ciclodextrina.

MATERIAL SUPLEMENTAR

Disponível em http://quimicanova.sbq.org.br, em formato pdf, com acesso livre. Na Figura 1S são apresentados os espectros de ¹H-RMN da β -CD livre e do composto de associação e/ou inclusão parcial entre a β -CD e o citrato de ródio(II).

AGRADECIMENTOS

À Dirección de Investigación Sede Bogotá (DIB) e ao CNPq pelo apoio financeiro.

REFERÊNCIAS

- Hughes, R. G.; Bear, J. L.; Kimball, A. P.; Proc. Am. Assoc. Cancer Res. 1972, 13, 120.
- Rao, P. N.; Smith, M. L.; Pathak, S.; Howard, R. A.; Bear. J. L.; *J. Nail. Cancer Int.* 1980, 64, 905.
- 3. Boyar, E. B.; Stephen, D. R.; Platinum Metals Rev. 1982, 26, 65.
- 4. Boyar, E. B.; Stephen, D. R.; Coord. Chem. Rev. 1983, 50, 109.
- Bear, J. L.; Gray, H. B.; Rainen, L.; Chan, I. M.; Howard, R.; Serio, G.; Kimball, A. P.; *Cancer Chemother. Rep.* **1975**, *59*, 611.

- 6. Howard, R. A.; Kimball, A. P.; Bear, J. L.; Cancer Res. 1979, 39, 2568.
- Zynger, S.; Kimura, E.; Najjar, R.; Braz. J. Med. Biol. Res. 1989, 22, 397.
- Howard, R. A.; Sherwood, E.; Kimball, A. P.; Bear, J. L.; *J. Med. Chem.* 1977, 20, 943.
- Rao, P. N.; Smith, M. L.; Pathak, S.; Howard, R. A.; Bear, J. L.; *J. Natl. Cancer Inst.* **1980**, *64*, 905.
- Chifotides, H. T.; Fu, P. K.; Dunbar, K. R.; Turro, C.; *Inorg. Chem.* 2004, 43, 1175.
- 11. de Souza, A. R.; Coelho, E. P.; Zyngier, S. B.; *Eur. J. Med. Chem.* **2006**, *41*, 1214.
- 12. Najjar, R.; dos Santos, F. S.; Seidel, W.; An. Acad. Bras. Ci. 1987, 59, 1.
- 13. Zyngier, S.; Kimura, E.; Najjar, R.; *Braz. J. Med. Biol. Res.* **1989**, *22*, 397.
- Carneiro, M. L.; Nunes, E. S.; Peixoto, R. C.; Oliveira, R. G.; Lourenço, L. H.; da Silva, I. C.; Simioni, A. R.; Tedesco, A. C.; de Souza, A. R.; Lacava, Z. G.; Báo, S. N.; *J. Nanobiotechnol.* **2011**, *9*, 11.
- 15. Burgos, A. E.; Belchior, J. C.; Sinisterra, R. D.; *Biomaterials* **2002**, *23*, 2519.
- 16. Burgos, A. E.; Sinisterra, R. D.; Rev. Colomb. Quím. 2010, 39, 427.
- 17. Villiers, A. C. R.; Acad. Sci. 1891, 112, 536.
- Sinisterra, R. D.; Shastri, V. P.; Najjar, R.; Langer, R.; J. Pharm. Sci. 1999, 88, 574.
- Burgos, A. E.; Sinisterra, R. D.; Augusti, R.; Lago, M. R.; J. Incl. Phenom. Macrocyclic Chem. 2003, 45, 149.
- de Sousa, F.; Denadai, A. M.; Lula, S. I.; Nascimento, C. S.; Fernandes, N. N.; Lima, A. C.; De Almeida, W. B.; Sinisterra, R. D.; *J. Am. Chem. Soc.* 2008, *130*, 8426.
- de Garcia, C. V.; Nicolini, J.; Machado, C.; Machado, V. G.; *Quim. Nova* 2008, *31*, 360.
- 22. Szejtli, J.; Chem. Rev. 1998, 98, 174.
- Jürgen, A.; Dalmolin, M. C.; de Oliveira, J. I. B.; Barcellos, I. O.; *Quim. Nova* **2010**, *33*, 929.
- 24. Saenger, W.; Angew. Chem., Int. Ed. 1980, 19, 344.
- Xavier, C. R.; Silva, C. A. P.; Schwingel, L. C.; Borghetti, G. S.; Koester, L. S.; Mayorga, P.; Teixeira, H. F.; Bassani, V. L.; Lula, I. S.; Sinisterra, R. D.; *Quim. Nova* 2010, *33*, 587.
- 26. Szejtli, J.; J. Mater. Chem. 1997, 7, 575.
- 27. Connor, K. A.; Chem. Rev. 1997, 97, 1325.
- Jianbin, C.; Liang, C.; Hao, X.; Dongpin, M.; Spectrochim. Acta 2002, 58, 2809.
- 29. Susumu, K.; Kouki, J.; Akira, O.; Thermochim. Acta 1993, 217, 187.
- 30. Steiner, T.; Gertraud, K. J.; J. Am. Chem. Soc. 1994, 116, 5122.
- Szafranek, J.; Szafranek, A.; J. Incl. Phenom. Mol. Recogn. Chem. 1993, 15, 351.
- 32. Gidley, M. J.; Bociek, S. M.; J. Chem. Soc. Commun. 1986, 15, 1223.
- 33. Gidley, M. J.; J. Am. Chem. Soc. 1988, 110, 3820.
- Heyes, S. J.; Clayden, N. J.; Dobson, C. M.; *Carbohydr. Res.* 1992, 23, 1.
- 35. Poveda, A.; Berbero-Jiménez; Chem. Soc. Rev. 1998, 27, 133.
- Yoshimi, S.; Naoya, I.; Tadashi, H.; J. Incl. Phenom. Macrocyclic Chem. 2009, 64, 135.