## AVALIAÇÃO DE ICP OES COM CONFIGURAÇÃO AXIAL OU RADIAL PARA DETERMINAÇÃO DE IODO EM SAL DE COZINHA

## Adriana A. Oliveira#, Joaquim A. Nóbrega\* e Edenir R. Pereira-Filho

Departamento de Química, Universidade Federal de São Carlos, CP 676, 13560-970 São Carlos - SP, Brasil Lilian C. Trevizan<sup>##</sup>

Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, CP 96, 13400-970 Piracicaba - SP, Brasil





**Figura 1S.** Efeitos da presença de interferentes na linha de emissão de iodo 182,976 nm: (a) Na<sup>+</sup>, (b) K<sup>+</sup> e de (c) Na<sup>+</sup> + K<sup>+</sup> (1:1)

\*e-mail: djan@ufscar.br

#\*Endereço atual: Divisão de Controle Sanitário e Ambiental, Unidade de Negócio do Médio Tietê, Cia. de Saneamento Básico do Estado de São Paulo, Botucatu - SP

**Figura 2S.** Efeitos da presença de interferentes na linha de emissão de iodo 179,847 nm: (a)  $Na^+$ , (b)  $K^+$  e de (c)  $Na^+$  +  $K^+$  (1:1)

<sup>\*</sup>Endereço atual: Corn Products, Mogi Guaçu - SP



**Figura 3S.** Efeitos da presença de interferentes na linha de emissão de iodo 184,382 nm: (a) Na<sup>+</sup>, (b) K<sup>+</sup> e de (c) Na<sup>+</sup> + K<sup>+</sup> (1:1)



**Figura 4S.** Efeitos da presença de interferentes na linha de emissão de iodo 206,163 nm: (a)  $Na^+$ , (b)  $K^+$  e de (c)  $Na^+$  +  $K^+$  (1:1)

| Experimento | Vazão do gás de nebulização<br>(1) |      | Potência de rádio frequência<br>(2) |      | Vazão de introdução de amostra /<br>Altura de observação (3) |          | Sinais obtidos<br>(média ± D.P.) |                 |
|-------------|------------------------------------|------|-------------------------------------|------|--------------------------------------------------------------|----------|----------------------------------|-----------------|
|             | Normalizado                        | Real | Normalizado                         | Real | Normalizado                                                  | Real     | Axial                            | Radial          |
| 1           | -1                                 | 0,7  | -1                                  | 0,9  | -1                                                           | 1,4 / 8  | $3829 \pm 14,49$                 | $199 \pm 4,31$  |
| 2           | +1                                 | 1,2  | -1                                  | 0,9  | -1                                                           | 1,4 / 8  | 0                                | $52,4 \pm 4,04$ |
| 3           | -1                                 | 0,7  | +1                                  | 1,3  | -1                                                           | 1,4 / 8  | $11978 \pm 112,47$               | $640 \pm 4,77$  |
| 4           | +1                                 | 1,2  | +1                                  | 1,3  | -1                                                           | 1,4 / 8  | 0                                | $117 \pm 6,44$  |
| 5           | -1                                 | 0,7  | -1                                  | 0,9  | +1                                                           | 3,6 / 17 | $2971 \pm 36,85$                 | $57,0 \pm 4,56$ |
| 6           | +1                                 | 1,2  | -1                                  | 0,9  | +1                                                           | 3,6 / 17 | 0                                | $11,5 \pm 2,53$ |
| 7           | -1                                 | 0,7  | +1                                  | 1,3  | +1                                                           | 3,6 / 17 | $14279 \pm 145,72$               | $418 \pm 5,69$  |
| 8           | +1                                 | 1,2  | +1                                  | 1,3  | +1                                                           | 3,6 / 17 | 0                                | $36,5 \pm 2,10$ |
| 9           | 0                                  | 1,0  | 0                                   | 1,0  | 0                                                            | 2,8 / 12 | $3948 \pm 17,25$                 | $44,3 \pm 1,36$ |
| 10          | 0                                  | 1,0  | 0                                   | 1,0  | 0                                                            | 2,8 / 12 | $3755 \pm 17,88$                 | $42,2 \pm 2,93$ |
| 11          | 0                                  | 1,0  | 0                                   | 1,0  | 0                                                            | 2,8 / 12 | $3246 \pm 41,84$                 | $28,2 \pm 1,74$ |
| 12          | -1,68                              | 0,5  | 0                                   | 1,0  | 0                                                            | 2,8 / 12 | $953 \pm 12,52$                  | $441 \pm 5,35$  |
| 13          | +1,68                              | 1,4  | 0                                   | 1,0  | 0                                                            | 2,8 / 12 | 0                                | $22,8 \pm 1,24$ |
| 14          | 0                                  | 1,0  | -1,68                               | 0,7  | 0                                                            | 2,8 / 12 | 0                                | $8,37 \pm 4,11$ |
| 15          | 0                                  | 1,0  | +1,68                               | 1,4  | 0                                                            | 2,8 / 12 | $8901 \pm 26,59$                 | $182 \pm 3,47$  |
| 16          | 0                                  | 1,0  | 0                                   | 1,0  | -1,68                                                        | 0,5 / 4  | $2543 \pm 55,27$                 | $135 \pm 3,94$  |
| 17          | 0                                  | 1,0  | 0                                   | 1,0  | +1,68                                                        | 4,5 / 20 | $3910 \pm 45{,}71$               | 21,9 4,65       |

Tabela 1S. Planejamento fatorial efetuado para avaliação das condições operacionais do ICP OES axial e radial

Tabela 2S. Valores de SBR, BEC e LOD para as linhas de emissão de iodo para configurações axial e radial

| Comprimento de |       | Axial        |                           | Radial |              |                           |
|----------------|-------|--------------|---------------------------|--------|--------------|---------------------------|
| onda (nm)      | SBR   | BEC (mg L-1) | LOD (mg L <sup>-1</sup> ) | SBR    | BEC (mg L-1) | LOD (mg L <sup>-1</sup> ) |
| I* 178,215     | 311,2 | 0,32         | 0,10                      | 40,2   | 2,49         | 0,62                      |
| I 179,847      | 23,5  | 4,25         | 0,67                      | 10,6   | 9,42         | 4,23                      |
| I 182,976      | 48,5  | 2,06         | 0,68                      | 9,77   | 10,2         | 3,24                      |
| I 184,382      | 8,38  | 11,9         | 1,56                      | 1,92   | 52,1         | 14,1                      |
| I 206,163      | 9,09  | 11,0         | 1,17                      | 2,27   | 44,0         | 8,31                      |

\*I Linha atômica

Tabela 3S. Valores de RMSEP para as linhas de emissão de iodo

| Comprimento de onda (nm) | RMSEP (mg L <sup>-1</sup> ) |  |  |
|--------------------------|-----------------------------|--|--|
| I* 178,215               | 0,0943                      |  |  |
| I 179,847                | 0,254                       |  |  |
| I 182,976                | 0,238                       |  |  |
| I 184,382                | 0,407                       |  |  |
| I 206,163                | 0,460                       |  |  |

\*I Linha atômica