
MONTMORILONITA MODIFICADA COMO CATALISADOR HETEROGÊNEO EM REAÇÕES DE ESTERIFICAÇÃO (M)ETÍLICA DE ÁCIDO LÁURICO

Leandro Zatta, Angelita Nepel, Andersson Barison e Fernando Wypych*

Departamento de Química, Universidade Federal do Paraná, CP 19081, 81531-980 Curitiba - PR, Brasil

 $\textbf{\it Figura~1S.}~ Espectros~ de~FTIR~ das~ amostras~ Na-MMT~ (a)~ e~ Na-MMT-ZrSO_4(b)$

 $\textbf{\textit{Figura 2S}}. \ \textit{Imagens de microscopia eletrônica de varredura das amostras: MMT (A,B), Na-MMT (C,D) e \ Na-MMT-ZrSO_4(E,F)}$

^{*}e-mail: wypych@ufpr.br

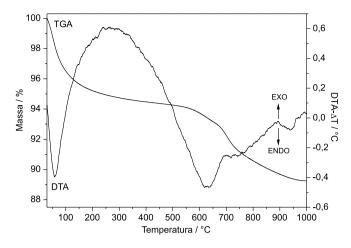
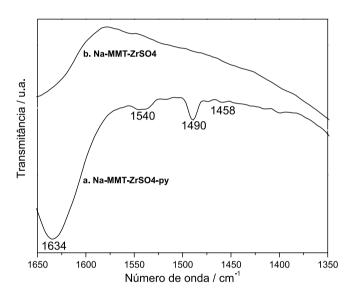



Figura 3S. Curvas de análise térmica (TGA e DTA) da amostra Na-MMT-ZrSO₄

Figura 4S. Espectro de FTIR da amostra Na-MMT- $ZrSO_4$ tratada com piridina (a) e sem tratamento com piridina (b)

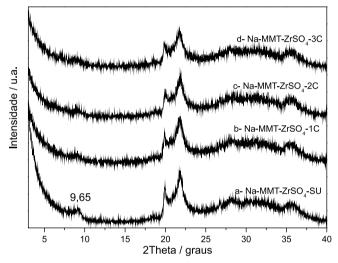


Figura 5S. Difratogramas de Raios X do catalisador Na-MMT-ZrSO $_4$ (a) e após primeiro (b), segundo (c) e terceiro ciclo de uso (d). Reações de esterificação metílica do ácido láurico (razão molar 12:1, teor de catalisador de 12% e temperatura de 160 °C)

Tabela 1S. Conversão a laurato de metila em função do tempo de reação

Tempo (min.)	Resultados RMN de ¹ H				
	Conversão térmica *		Conversão catalisada *		Ganho de
	Acidez (%)	Conversão (%)	Acidez (%)	Conversão (%)	conversão (%)
30	$49,99 \pm 0,83$	50,01	$27,30 \pm 0,90$	72,70	22,69
60	$35,90 \pm 1,31$	64,10	$18,46 \pm 0,48$	81,54	17,44
90	$30,3 \pm 0,14$	69,70	$12,39 \pm 0,14$	87,61	17,91
120	$24,67 \pm 0,25$	75,33	$5,47 \pm 1,29$	94,53	19,20
150	$18,27 \pm 0,03$	81,73	$5,48 \pm 0,79$	94,52	12,79
180	$16,69 \pm 0,36$	83,31	$5,76 \pm 0,41$	94,24	10,93
210	$14,36 \pm 0,14$	85,64	$3,49 \pm 0,21$	96,51	10,87
240	$12,92 \pm 0,33$	87,08	$4,36 \pm 0,20$	95,64	8,56
270	$12,82 \pm 0,04$	87,18	$4,25 \pm 0,23$	95,75	8,57

^{* =} medidas realizadas em triplicata.