ELECTRON PARAMAGNETIC RESONANCE (EPR) SPECTRAL COMPONENTS OF SPIN-LABELED LIPIDS IN SATURATED PHOSPHOLIPID BILAYERS. EFFECT OF CHOLESTEROL

Heverton Silva Camargos# and Antonio Alonso*

Instituto de Física, Universidade Federal de Goiás, 74001-970 Goiânia - GO, Brasil

Figure 1S. Experimental (black line) and best-fit (red line) EPR spectra of 5-DMS in PC-18, PC-20 and PC-22 at temperatures indicated. The best-fit spectra were obtained by NLLS fitting, using a simulation model with one or two spectral components

Figure 2S. Comparison of results obtained with the NLLS and EPRSIM fitting programs for the temperature dependence of the rotational correlation time, t_{e} and relative population of component 1, N_p in the EPR spectra of 5-DMS in DPPC

*e-mail: alonso@if.ufg.br

[#]Alternative address: Engenharia Elétrica, Fundação Universidade Federal do Tocantins, 77001 - 090 Palmas - TO, Brasil

Figure 3S. Temperature dependencies of best-fit parameters of 5-DMS in DPPC and DPPC with 40 mol % cholesterol: (A) rotational correlation time, t_o and (B) percentage of component 1, N_1

Table 1S. Principal components of the magnetic tensors g (g-factor) and A (hyperfine splitting) used in the nonlinear least-squares fitting program (NLLS)

Parameter -	Component 1		- Component 2
	below T _m	above T _m	Component 2
g _{xx}	2.0080	2.0080	2.0082
g_{yy}	2.0060	2.0060	2.0062
g _{zz}	2.0020	2.0020	2.0027
$A_{xx}(G)$	6.9	5.5	5.8
A _{yy} (G)	6.0	5.4	5.7
$A_{zz}(G)$	31.6ª	34.1	31.6
$a_0^{}(G)^{b}$	14.8	15.0	14.4

^a For samples containing 40 mol % cholesterol the A_{zz} used was of 32.5 G. ^b $a_0 = 1/3(A_{xx} + A_{yy} + A_{zz})$.