SÍNTESE DE DERIVADOS 4-ARIL-3,4-DI-HIDROCUMARÍNICOS CATALISADA POR NbCl₅

Willian Henrique dos Santos, Mayara de Souza Siqueira e Luiz Carlos da Silva-Filho*

Faculdade de Ciências, Universidade Estadual Paulista "Júlio de Mesquita Filho", 17033-360 Bauru - SP, Brasil

Recebido em 29/1/13; aceito em 17/6/13; publicado na web em 2/8/13

SYNTHESIS OF 4-ARYL-3,4-DIHYDROCOUMARIN DERIVATIVES CATALYZED BY NbCl₅. Multicomponent reactions between phenols, β -diesters and benzaldehydes for the synthesis of 4-aryl-3,4-dihydrocoumarin derivatives were carried out under mild conditions (room temperature) and presented moderate yields (38-88%) and reasonable reaction times (2-4 days), using niobium pentachloride as a catalyst.

Keywords: niobium pentachloride; multicomponent reaction; coumarin derivatives.

INTRODUÇÃO

As cumarinas foram isoladas pela primeira vez por Vogel, em 1820, de flores de trevo (*Melilotus Officinalis*) e de sementes de Cumaru. Atualmente, mais de 1400 tipos de cumarinas já foram descobertas e caracterizadas. São encontradas em diversas famílias do reino vegetal, como na *Papilonaceae (Fabaceae), Lamiaceae, Asteraceae, Solanaceae, Poaceae, Umbelliferae* e principalmente na *Apiaceae e Rutaceae*, nas quais são mais abundantes.^{1,2} Sua concentração é maior em frutos, sementes e raízes.¹

A cumarina é um princípio ativo natural que pode ser encontrado em diversas plantas e frutas, como no agrião, guaco, canela, chicória, cumaru, emburana, sucupira, chambá, carapiá, ipeca, cereja, morango, framboesa e damasco. Seu aroma é semelhante ao da baunilha.¹ As cumarinas possuem propriedades anti-inflamatórias, antioxidantes, anticoagulantes, antibióticas, imunomodulatórias, antimicrobianas, antiviral e broncodilatadoras, sendo assim amplamente aplicadas na medicina no tratamento de linfoedemas, câncer, queimaduras, varizes e doenças reumáticas.³ Na indústria alimentícia, as cumarinas são utilizadas como corantes e essências, e em bebidas alcoólicas. Na indústria de cosméticos, como fixador de perfumes e em pasta de dentes. As cumarinas também apresentam diversas aplicações em diferentes áreas, sendo encontradas em borrachas sintéticas, materiais plásticos, inseticidas, detergentes, cigarros, tintas e sprays.⁴

Mais recentemente os compostos cumarínicos e seus derivados têm despertado o interesse de um grande número de grupos de pesquisa, na área de novos materiais, pela possibilidade de seu uso como corantes sensibilizadores em células solares (DSSC) e lasers. As cumarinas absorvem fortemente na região do visível, por isso elas têm grande possibilidade de serem bons sensibilizadores para semicondutores com grande *band gap*, outro fator que favorece a utilização dos derivados cumarínicos é devido a estes compostos apresentarem um elevado rendimento quântico de fluorescência.⁵

Dentre os métodos mais conhecidos para a síntese de derivados cumarínicos descritos na literatura podemos citar as reações de Knoevenagel, Pechmann, Perkin, entre outras.⁶

Os derivados de 4-aril-3,4-di-hidrocumarinas, pertencentes à classe dos neoflavonóides,⁷ podem ser encontrados nas mais diversas classes de plantas, dentre estes podemos citar os derivados de **1**, **2** e **3**, isolados respectivamente da *Vaccinum myrtlillus L., Aloe vera* e *Gnetum cleistostachyum* apresentando atividades anti-inflamatórias e antioxidantes.⁸ (Figura 1)

Outras atividades biológicas atribuídas aos derivados de 4-aril-3,4-di-hidrocumarinas são: moderada atividade estrogênica, inibição de proteínas quinase e aldose redutase, atividade anti-herpética, piscicida e moluscicida.^{8,9}

Os métodos mais conhecidos para a síntese de derivados de 3,4-dihidrocumarinas são através da hidroarilação de derivados do ácido cinâmico com diferentes tipos de fenóis e hidrogenação catalítica de cumarinas.⁹ Entretanto, nosso grupo de pesquisa desenvolveu recentemente um novo método de síntese de diferentes derivados de 4-aril-3,4-di-hidrocumarinas através da reação multicomponente entre 3,5-dimetoxifenol (4), malonato de dimetila (5) e diferentes aldeídos aromáticos na presença de pentacloreto de nióbio, como ácido de Lewis (Esquema 1).¹⁰

Esquema 1. Sínteses de derivados de 4-alquil-3,4-di-hidrocumarinas promovidas pelo NbCl,

O pentacloreto de nióbio tem mostrado ser um poderoso agente ativante em várias reações orgânicas. Este reagente oxofílico é um bom ácido de Lewis e tem recebido grande atenção por diversos grupos de pesquisa nos últimos anos.^{11,12}

Com base nestas informações, neste trabalho relatamos a continuidade dos estudos sobre o desenvolvimento deste novo método de síntese de derivados de 4-aril-3,4-di-hidrocumarinas na presença do pentacloreto de nióbio, verificando qual é o efeito da variação na substituição no anel fenólico e no tipo de β -diéster utilizado.

RESULTADOS E DISCUSSÃO

Verificou-se inicialmente qual é o efeito causado pelo tipo de substituição presente no derivado fenólico, para isso as reações multicomponentes para a síntese de derivados de 4-aril-3,4-di-hidrocumarinas foram realizadas sob atmosfera inerte de N_2 , à temperatura ambiente e utilizando diclorometano anidro como solvente. Para cada um dos testes reacionais foram utilizados a proporção de 1,0 mmol do derivado fenólico (**4 a-f**), 1,1 mmol do malonato de dimetila (**5**) e 1,1 mmol do derivado de benzaldeído (**6**). A proporção de NbCl₅ utilizada nos testes reacionais foi de 1,0 equivalente para cada mol de derivado fenólico utilizado. Os resultados obtidos para essas reações estão mostrados no Esquema 2 e na Tabela 1. Os produtos obtidos foram purificados por coluna cromatográfica de sílica gel e caracterizados por métodos espectroscópicos e espectrométricos.

Analisando os dados da Tabela 1, a primeira conclusão que se obtém é que a presença do NbCl₅ e de grupos OMe no composto fenólico utilizado é necessária para que ocorra formação dos derivados cumarínicos através da RMC, pois, quando foram utilizados os derivados fenólicos **4c** a **4g** não foi verificada a formação das cumarinas esperadas mesmo com altos tempos reacionais.

Outro resultado interessante observado na Tabela 1 é que a presença do grupo OMe em *para* ao grupo hidroxila do 3,4,5-trimetoxifenol (**4b**) promove a desativação da posição em *orto* ao grupo hidroxila, aumentando consideravelmente o tempo reacional e diminuindo o rendimento obtido para os derivados de 4-aril-3,4-di-hidrocumarinas.¹⁰

Dando continuidade aos estudos sobre a utilização do pentacloreto de nióbio em reações multicomponentes para a síntese de derivados de 4-aril-3,4-di-hidrocumarinas, foram realizadas reações alterando o β -diéster utilizado, nas mesmas condições desenvolvidas em estudos

Tabela 1. Dados obtidos nas RMCs para a síntese de derivados de 4-aril-3,4-
di-hidrocumarinas na presença de NbCl5 com diferentes derivados fenólicos

Fenol	R ₁	R_2	R ₃	Tempo (h)	Rendimento (%)
4a	OMe	Н	OMe	150	0 (7a)*
4a	OMe	Н	OMe	48	88 (7 a)
4b	OMe	OMe	OMe	96	74 (7b)
4 c	Cl	Н	Cl	168	0 (7c)
4d	Br	Н	Br	168	0 (7d)
4e	NO_2	Н	Н	168	0 (7e)
4f	NO_2	Н	NO_2	168	0 (7f)
4g	Me	Н	Me	168	0 (7g)

*Experimento realizado sem a presença de NbCl₅.

anteriores,¹⁰ sob atmosfera inerte de N_2 , à temperatura ambiente e utilizando diclorometano anidro como solvente e com tempo reacional de 48 horas. Para cada um dos testes reacionais foi utilizado a proporção de 1,0 mmol do 3,5-dimetoxifenol (**4a**), 1,1 mmol do malonato de dietila (**8**) e 1,1 mmol do derivado de benzaldeído (**6 a-k**). (Esquema 3).

Os rendimentos das reações multicomponentes entre o 3,5-dimetoxifenol (4a), malonato de dietila (8) e os derivados de anilina (6 a-k), catalisadas pelo NbCl_s, estão mostrados na Tabela 2.

Os dados mostrados da Tabela 2 indicam que a presença do grupo etoxila no derivado de β -diéster promove uma diminuição do rendimento reacional, se compararmos esses resultados com os obtidos quando se utiliza o malonato de dimetila (5).¹⁰

CONCLUSÃO

O desenvolvimento de novas rotas sintéticas para a obtenção de derivados cumarínicos é de fundamental importância para ciência, tendo como base a vasta aplicação destes compostos no dia a dia das pessoas, que vai desde a utilização como fármacos e perfumes, até a utilização como corantes para células solares. Os resultados mostrados neste trabalho mostram que o pentacloreto de nióbio promove a ocorrência das reações multicomponentes entre derivados fenólicos

Esquema 2. RMCs para a síntese de derivados de 4-aril-3,4-di-hidrocumarinas na presença de NbCl_s com diferentes derivados fenólicos

Esquema 3. RMCs para a síntese de derivados de 4-aril-3,4-di-hidrocumarinas na presença de NbCl_s

Tabela 2. Dados obtidos nas RMCs para a síntese de derivados de 4-aril-3,4--di-hidrocumarinas na presença de NbCl₅

Aldeído	R_1	R_2	R ₃	R_4	Rendimento (%)
6a	Н	Н	Н	Н	63 (9a)
6b	Me	Н	Н	Н	45 (9b)
6c	Н	Me	Н	Н	46 (9c)
6d	Н	Н	Me	Н	50 (9d)
6e	Me	Н	Me	Me	45 (9e)
6f	<i>t</i> -But	Н	Н	Н	71 (9f)
6g	Н	OMe	Н	Н	47 (9g)
6h	Н	Н	OMe	Н	76 (9h)
6i	F	Н	Н	Н	61 (9i)
6j	Cl	Н	Н	Н	53 (9j)
6k	Br	Н	Н	Н	38 (9k)

metoxílados, β -diésteres e derivados de benzaldeído para a síntese de derivados de 4-aril-3,4-di-hidrocumarinas com bons rendimentos e bons tempos reacionais, em condições brandas de temperatura e pressão.

A presença de grupos metoxila nos derivados fenólicos utilizados nesta síntese é de extrema importância para a ocorrência da reação multicomponente, pois, quando se utiliza derivados não metoxilados não se verifica a formação dos produtos de interesse, mesmo com longos tempos reacionais. Outro resultado interessante obtido neste trabalho diz respeito ao tipo de β -diéster utilizado, pois, dependendo da natureza do grupo-que-sai a reação ocorre com rendimentos menores.

PARTE EXPERIMENTAL

Todas as reações foram realizadas sob atmosfera de N_2 , à temperatura ambiente, utilizando diclorometano anidro como solvente. Todos os reagentes comercialmente disponíveis foram utilizados sem purificação adicional. O NbCl₅ utilizado foi recristalizado por sublimação conforme procedimento descrito na literatura.¹³

As análises por cromatografia em camada delgada (CCD) foram feitas com placas de sílica gel 60 da Aldrich[®] e foram visualizadas com uma solução de vanilina / metanol / água / ácido sulfúrico. As purificações por cromatografia em coluna foram realizadas utilizando sílica gel 60 (70-230 mesh) da Aldrich[®].

Os espectros de RMN ¹H de 300 MHz e de RMN ¹³C de 75 MHz foram obtidos em um espectrômetro Bruker DPX-300, os espectros de RMN ¹H de 400 MHz e de RMN ¹³C de 100 MHz em um espectrômetro Bruker DRX-400 e os espectros de RMN ¹H de 500 MHz e de RMN ¹³C de 125 MHz em um espectrômetro Bruker DRX-500. Os deslocamentos químicos (*d*) estão relatados em parte por milhão (ppm) em relação ao tetrametilsilano (TMS), utilizado como padrão interno, ou ao pico residual do solvente deuterado utilizado (CDCl₃).

Os espectros de absorção no IV foram registrados em um espectrômetro Perkin-Elmer Sistema RX-FTIR e as análises de massas de alta resolução foram realizadas em um espectrômetro de massas micrOTOF (Bruker).

Procedimento

Para uma solução de pentacloreto de nióbio (1,0 mmol) em 2,0 mL de diclorometano anidro, mantida a temperatura ambiente sob atmosfera de nitrogênio, foi adicionada uma solução de malonato de dimetila (**5**) ou dietila (**8**) (1,1 mmol), o derivado fenólico (**4a-g**) (1,0 mmol) e o respectivo derivado de benzaldeído (**6a-k**) (1,1 mmol) em 5,0 mL de diclorometano anidro. Após a completa adição, a mistura permaneceu sob agitação à temperatura ambiente. A mistura reacional foi cessada com adição de (3,0 mL) de água destilada. A amostra foi extraída com diclorometano $(3 \times 10,0 \text{ mL})$. A fase orgânica foi separada e lavada com uma solução de bicarbonato de sódio saturada ($3 \times 10,0 \text{ mL}$) e com uma solução de NaCl saturada ($2 \times 10,0 \text{ mL}$). Em seguida a fase orgânica foi seca com sulfato de magnésio anidro. O solvente foi removido a vácuo e os produtos foram purificados por cromatografia em coluna de sílica gel utilizando uma mistura de hexano:acetato de etila (7,0:3,0) como eluente.

(±) 5,7-dimetoxi-4-fenil-3,4-di-hidrocumarina-3-carboxilato de metila (7*a*): IV (cm⁻¹): 1778, 1737, 1627, 1595, 1502, 1454, 1437, 1423, 1319, 1255, 1215, 1157, 1134, 1097. RMN ¹H (500 MHz, CDCl₃): δ (ppm) 7,28-7,22 (m, 3H), 7,11 (m, 2H), 6,35 (d, *J*= 2,2 Hz, 1H), 6,27 (d, *J*= 2,2 Hz, 1H), 4,97 (sl, 1H), 3,95 (d, *J*= 1,4 Hz, 1H), 3,81 (s, 3H), 3,72 (s, 3H), 3,69 (s, 3H). RMN ¹³C (125 MHz, CDCl₃): δ (ppm) 167,3, 163,7, 161,0, 157,8, 152,6, 139,7, 128,9, 128,9, 126,8, 103,6, 95,4, 93,8, 55,8, 55,5, 54,4, 53,2, 38,8. IES-EMAR: *m/z* calculado $C_{19}H_{19}O_6$ [M + H]⁺: 343,11816; encontrado 343,1145.

(±) 5,6,7-trimetoxi-4-fenil-3,4-di-hidrocumarina-3-carboxilato de metila (7b): IV (cm⁻¹): 1789, 1735, 1630, 1599, 1498, 1454, 1433, 1424, 1316, 1261, 1132, 1090. RMN ¹H (300 MHz, CDCl₃): δ (ppm) 7,29-7,26 (m, 3H), 7,07 (m, 2H), 6,54 (s, 1H), 4,97 (d, *J*=1,3 Hz, 1H), 3,94 (d, *J*=1,3 Hz, 1H), 3,89 (s, 3H), 3,84 (s, 3H), 3,75 (s, 3H), 3,72 (s, 3H). RMN ¹³C (75 MHz, CDCl₃): δ (ppm) 166,9, 163,3, 158,9, 154,2, 147,0, 138,2, 133,6, 132,1, 129,3, 128,3, 108,2, 96,7, 61,1, 61,0, 56,1, 54,1, 53,4, 38,9. IES-EMAR: *m/z* calculado C₂₀H₂₁O₇ [M + H]⁺: 373,12837; encontrado 373,1290.

(±) 5,7-dimetoxi-4-fenil-3,4-di-hidrocumarina-3-carboxilato de etila (**9a**): IV (cm⁻¹): 3004, 2954, 2927, 2842, 1776, 1739, 1620, 1593, 1506, 1454, 1425, 1330, 1280, 1267, 1222, 1205, 1195, 1132, 1099. RMN ¹H (300 MHz, CDCl₃): δ (ppm) 7,29-7,23 (m, 3H), 7,15-7,12 (m, 2H), 6,37 (d, *J*= 2,2 Hz, 1H), 6,29 (d, *J*= 2,2 Hz, 1H), 4,99 (sl, 1H), 4,15 (m, 2H), 3,95 (d, *J*= 1,7 Hz, 1H), 3,83 (s, 3H), 3,75 (s, 3H), 1,17 (t, *J*= 7,1 Hz, 3H). RMN ¹³C (75 MHz, CDCl₃): δ (ppm) 166,8, 163,9, 160,9, 157,7, 152,7, 139,6, 129,0, 127,5, 126,9, 103,7, 95,3,

93,7, 62,3, 55,9, 55,6, 54,6, 38,9, 13,9. IES-EMAR: *m/z* calculado C₂₀H₂₀O₆ [M + H]⁺: 357,13382; encontrado 357,1330.

(±) 5,7-dimetoxi-4-(4-metilfenil)-3,4-di-hidrocumarina-3-carboxilato de etila (**9b**): IV (cm⁻¹): 3000, 2950, 2869, 2848, 1774, 1745, 1625, 1591, 1500, 1461, 1434, 1421, 1359, 1319, 1296, 1257, 1234, 1215, 1201, 1159, 1141, 1122, 1093. RMN ¹H (300 MHz, CDCl₃): δ (ppm) 7,10 (d, *J*= 8,1 Hz, 2H), 7,07 (d, *J*= 8,1 Hz, 2H), 6,35 (d, *J*= 2,3 Hz, 1H), 6,27 (d, *J*= 2,3 Hz, 1H), 4,94 (sl, 1H), 4,15 (m, 2H), 3,92 (d, *J*= 1,7 Hz, 1H), 3,82 (s, 3H), 3,74 (s, 3H), 2,30 (s, 3H), 1,16 (t, *J*= 7,1 Hz, 3H). RMN ¹³C (75 MHz, CDCl₃): δ (ppm) 166,9, 164,0, 160,9, 157,8, 152,8, 137,2, 136,6, 129,7, 126,7, 103,9, 95,3, 93,7, 62,2, 55,8, 55,5, 54,7, 38,5, 20,9, 13,8. IES-EMAR: *m/z* calculado C₂₁H₂₃O₆ [M + H]⁺: 371,14372; encontrado 371,1488.

(±) 5,7-dimetoxi-4-(3-metilfenil)-3,4-di-hidrocumarina-3--carboxilato de etila (**9***c*): IV (cm⁻¹): 3087, 3000, 2968, 2935, 2840, 1772, 1722, 1623, 1593, 1502, 1463, 1421, 1388, 1367, 1324, 1292, 1267, 1236, 1216, 1189, 1161, 1137, 1095. RMN ¹H (300 MHz, CDCl₃): δ (ppm) 7,16 (t, *J*= 7,5 Hz, 1H), 7,05 (d, *J*= 7,5 Hz, 1H), 6,93 (m, 2H), 6,36 (d, *J*= 2,3 Hz, 1H), 6,28 (d, *J*= 2,3 Hz, 1H), 4,94 (d, *J*= 1,1 Hz, 1H), 4,15 (m, 2H), 3,93 (d, *J*= 1,1 Hz, 1H), 3,83 (s, 3H), 3,74 (s, 3H), 2,29 (s, 3H), 1,13 (t, *J*= 7,1 Hz, 3H). RMN ¹³C (75 MHz, CDCl₃): δ (ppm) 166,9, 164,1, 160,1, 157,8, 152,8, 139,5, 138,7, 128,9, 128,4, 127,6, 123,9, 103,7, 95,3, 93,7, 62,3, 55,9, 55,5, 54,7, 38,8, 21,5, 13,9. IES-EMAR: *m/z* calculado C₂₁H₂₃O₆ [M + H]⁺: 371,14372; encontrado 371,1491.

(±) 5,7-dimetoxi-4-(2-metilfenil)-3,4-di-hidrocumarina-3-carboxilato de etila (**9**d): IV (cm⁻¹): 3000, 2954, 2927, 2850, 1770, 1737, 1625, 1591, 1502, 1488, 1461, 1431, 1319, 1294, 1257, 1205, 1189, 1161, 1137, 1095. RMN ¹H (300 MHz, CDCl₃): δ (ppm) 7,22 (d, *J*= 7,3 Hz, 1H), 7,16 (dt, *J*₁=*J*₂= 7,3 Hz e *J*₃ = 1,2 Hz, 1H), 7,03 (dt, *J*₁=*J*₂= 7,3 Hz e *J*₃ = 1,2 Hz, 1H), 6,39 (d, *J*= 2,3 Hz, 1H), 6,26 (d, *J*= 2,3 Hz, 1H), 5,16 (d, *J*= 1,4 Hz, 1H), 4,15 (m, 2H), 3,84 (s, 3H), 3,76 (d, *J*= 1,4 Hz, 1H), 3,70 (s, 3H), 2,54 (s, 3H), 1,15 (t, *J*= 7,1 Hz, 3H). RMN ¹³C (75 MHz, CDCl₃): δ (ppm) 167,0, 166,6, 163,7, 161,0, 157,6, 153,3, 137,7, 135,3, 130,9, 127,5, 126,7, 126,2, 103,8, 95,4, 93,6, 61,4, 55,9, 55,6, 53,3, 41,7, 19,2, 13,8. IES-EMAR: *m/z* calculado C₂₁H₂₃O₆ [M + H]⁺: 371,14372; encontrado 371,1491.

(±) 5,7-dimetoxi-4-(2,4,6-trimetilfenil)-3,4-di-hidrocumarina-3--carboxilato de etila (9e): IV (cm⁻¹): 3012, 2968, 2935, 2840, 1768, 1737, 1621, 1593, 1504, 1452, 1421, 1390, 1367, 1328, 1261, 1218, 1191, 1162, 1143, 1130, 1097. RMN ¹H (400 MHz, CDCl₃): δ (ppm) 6,89 (s, 1H), 6,68 (s, 1H), 6,30 (d, *J*= 2,3 Hz, 1H), 6,22 (d, *J*= 2,3 Hz, 1H), 5,27 (d, *J*= 2,3 Hz, 1H), 4,19 (q, *J*= 7,1 Hz, 2H), 3,81 (s, 3H), 3,74 (d, *J*= 2,3 Hz, 1H), 3,62 (s, 3H), 2,52 (s, 3H), 2,23 (s, 3H), 1,88 (s, 3H), 1,21 (t, *J*= 7,1 Hz, 3H). RMN ¹³C (100 MHz, CDCl₃): δ (ppm) 167,8, 164,5, 160,7, 158,4, 152,7, 136,4, 134,7, 131,3, 129,7, 103,5, 95,3, 93,5, 62,4, 55,9, 55,5, 52,2, 35,7, 20,6, 13,9. IES-EMAR: *m/z* calculado C₂₃H₂₇O₆ [M + H]⁺: 399,18077; encontrado 399,1796.

(±) 5,7-dimetoxi-4-(4-t-butilfenil)-3,4-di-hidrocumarina-3--carboxilato de etila (**9***f*): IV (cm⁻¹): 3108, 3012, 2960, 2946, 2862, 1768, 1741, 1729, 1625, 1594, 1502, 1465, 1421, 1367, 1330, 1296, 1272, 1259, 1238, 1213, 1191, 1159, 1137, 1099. RMN ¹H (400 MHz, CDCl₃): δ (ppm) 7,29 (d, *J*= 8,3 Hz, 2H), 7,06 (d, *J*= 8,3 Hz, 2H), 6,35 (d, *J*= 2,3 Hz, 1H), 6,27 (d, *J*= 2,3 Hz, 1H), 4,96 (d, *J*= 1,5 Hz, 1H), 4,15 (m, 2H), 3,95 (d, *J*= 1,5 Hz, 1H), 3,82 (s, 3H), 3,75 (s, 3H), 1,27 (s, 9H), 1,12 (t, *J*= 7,1 Hz, 3H). RMN ¹³C (100 MHz, CDCl₃): δ (ppm) 166,9, 164,3, 160,8, 157,7, 152,7, 150,2, 136,4, 126,5, 125,9, 104,0, 95,3, 93,7, 62,3, 55,9, 55,6, 54,6, 38,4, 34,4, 31,2, 13,8. IES-EMAR: *m*/z calculado C₂₄H₂₉O₆ [M + H]⁺: 413,19642; encontrado 413,1998.

(±) 5,7-dimetoxi-4-(3-metoxifenil)-3,4-di-hidrocumarina-3--carboxilato de etila (**9g**): IV (cm⁻¹): 3000, 2983, 2941, 2906, 2838, 1776, 1729, 1623, 1593, 1500, 1488, 1463, 1423, 1369, 1326, 1253, 1212, 1134, 1097. RMN ¹H (400 MHz, CDCl₃): δ (ppm) 7,19 (t, J= 7,8 Hz, 1H), 6,77 (dd, J_i = 7,8 e J_2 = 2,2 Hz, 1H), 6,72 (dd, J_i = 7,8 e J_2 = 1,0 Hz, 1H), 6,65 (sl, 1H), 6,34 (d, J= 2,3 Hz, 1H), 6,27 (d, J= 2,3 Hz, 1H), 4,94 (sl, 1H), 4,13 (m, 2H), 3,94 (d, J= 1,5 Hz, 1H), 3,81 (s, 3H), 3,75 (s, 3H), 3,74 (s, 3H), 1,13 (t, J= 7,1 Hz, 3H). RMN ¹³C (100 MHz, CDCl₃): δ (ppm) 166,8, 166,6,163,9, 160,9, 159,8, 157,7, 152,7, 141,1, 130,0, 119,1, 113,1, 112,5, 103,5, 95,3, 93,7, 61,5, 55,9, 55,5, 55,2, 54,6, 38,8, 13,9. IES-EMAR: *m/z* calculado C₂₁H₂₃O₇ [M + H]⁺: 387,14438; encontrado 387,1452.

(±) 5,7-dimetoxi-4-(2-metoxifenil)-3,4-di-hidrocumarina-3--carboxilato de etila (**9**h): IV (cm⁻¹): 2997, 2960, 2923, 2836, 1772, 1735, 1627, 1593, 1504, 1456, 1434, 1423, 1282, 1263, 1220, 1159, 1137, 1110, 1095. RMN ¹H (300 MHz, CDCl₃): δ (ppm) 7,22 (ddd, J_1 = 8,2, J_2 = 7,3 e J_3 = 1,7 Hz, 1H), 6,89 (d, J= 8,2 Hz, 1H), 6.79 (dt, J_1 = J_2 = 7,3 Hz e J_3 = 1,0 Hz, 1H), 6,74 (dd, J_1 = 7,3 e J_2 = 1,7 Hz, 1H), 6,35 (d, J= 2,3 Hz, 1H), 6,27 (d, J= 2,3 Hz, 1H), 5,18 (d, J= 1,3 Hz, 1H), 4,16 (m, 2H), 4,09 (d, J= 1,3 Hz, 1H), 3,89 (s, 3H), 3,83 (s, 3H), 3,71 (s, 3H), 1,14 (t, J= 7,0 Hz, 3H). RMN ¹³C (75 MHz, CDCl₃): δ (ppm) 167,2, 164,0, 160,8, 157,9, 156,7, 153,2, 130,9, 128,8, 128,0, 126,9, 120,5, 110,4, 103,1, 95,3, 93,7, 55,8, 55,5, 55,1, 53,1, 51,9, 34,5, 13,8. IES-EMAR: m/z calculado $C_{21}H_{23}O_7$ [M + H]⁺: 387,14438; encontrado 387,1450.

(±) 5,7-dimetoxi-4-(4-fluor-fenil)-3,4-di-hidrocumarina-3--carboxilato de etila (9i): IV (cm⁻¹): 3016, 2981, 2956, 2917, 2850, 1778, 1739, 1631, 1591, 1502, 1463, 1454, 1436, 1425, 1321, 1297, 1261, 1213, 1184, 1153, 1128, 1091. RMN ¹H (300 MHz, CDCl₃): δ (ppm) 7,09 (m, 2H), 6,96 (m, 2H), 6,35 (d, *J*= 2,1 Hz, 1H), 6,28 (d, *J*= 2,1 Hz, 1H), 4,95 (sl, 1H), 4,15 (m, 2H), 3,91 (d, *J*= 1,3 Hz, 1H), 3,82 (s, 3H), 3,75 (s, 3H), 1,13 (t, *J*= 7,13 Hz, 3H). RMN ¹³C (75 MHz, CDCl₃): δ (ppm) 166,6, 163,8, 163,2, 161,1, 160,8, 157,68, 151,6, 135,2, 128,6, 115,9, 115,7, 103,5, 95,3, 93,7, 62,39, 55,8, 55,6, 54,6, 38,2, 13,8. IES-EMAR: *m/z* calculado C₂₀H₂₀FO₆ [M + H]⁺: 375,12439; encontrado 375,1250.

(±) 5,7-dimetoxi-4-(4-clorofenil)-3,4-di-hidrocumarina-3--carboxilato de etila (**9***j*): IV (cm⁻¹): 3114, 3012, 2956, 2935, 2917, 2848, 1772, 1745, 1733, 1625, 1594, 1502, 1488, 1465, 1421, 1365, 1328, 1297, 1286, 1267, 1236, 1220, 1203, 1189, 1162, 1139, 1101. RMN ¹H (300 MHz, CDCl₃): δ (ppm) 7,26-7,24 (m, 2H), 7,08-7,05 (m, 2H), 6,35 (d, *J*= 2,3 Hz, 1H), 6,28 (d, *J*= 2,3 Hz, 1H), 4,95 (d, *J*= 1,5 Hz, 1H), 4,15 (m, 2H), 3,90 (d, *J*= 1,5 Hz, 1H), 3,82 (s, 3H), 3,74 (s, 3H), 1,13 (t, *J*= 7,1 Hz, 3H). RMN ¹³C (75 MHz, CDCl₃): δ (ppm) 166,6, 163,6, 161,2, 157,4, 152,7, 138,2, 133,4, 129,2, 128,4, 103,3, 95,4, 93,8, 62,4, 55,8, 55,6, 55,4, 38,4, 13,8. IES-EMAR: *m/z* calculado C₂₀H₂₀ClO₆ [M + H]⁺: 391,09484; encontrado 391,0940.

(±) 5,7-dimetoxi-4-(4-bromofenil)-3,4-di-hidrocumarina-3--carboxilato de etila (**9**k): IV (cm⁻¹): 3114, 3010, 2950, 2933, 2842, 1772, 1733, 1625, 1594, 1502, 1483, 1463, 1419, 1402, 1365, 1328, 1297, 1265, 1236, 1218, 1189, 1162, 1141, 1101. RMN ¹H (400 MHz, CDCl₃): δ (ppm) 7,27-7,24 (m, 2H), 6,87-6,85 (m, 2H), 6,21 (d, *J*= 2,3 Hz, 1H), 6,13 (d, *J*= 2,3 Hz, 1H), 4,78 (d, 1,3 Hz, 1H), 3,99 (m, 2H), 3,75 (d, *J*= 1,3 Hz, 1H), 3,68 (s, 3H), 3,60 (s, 3H), 1,01 (t, *J*= 7,2 Hz, 3H). RMN ¹³C (100 MHz, CDCl₃): δ (ppm) 166,6, 163,7, 161,2, 157,7, 152,7, 138,7, 132,1, 128,7, 121,5, 103,1, 95,4, 93,7, 62,4, 55,9, 55,6, 54,4, 38,4, 13,8. IES-EMAR: *m/z* calculado C₂₀H₂₀BrO₆ [M + H]⁺: 435,04433; encontrado 435,0435.

MATERIAL SUPLEMENTAR

O material suplementar, disponível em http://quimicanova.sbq. org.br, em arquivo PDF e com acesso livre, apresenta os espectros de RMN ¹H e ¹³C de todos os compostos sintetizados (**7a**, **7b** e **9a** a **9k**).

AGRADECIMENTOS

Os autores agradecem a Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), o Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), a Coordenadoria de Aperfeiçoamento de Pessoal do Nível Superior (CAPES) e a Pró-Reitoria de Pesquisa da UNESP (PROPe-UNESP) pelo auxilio financeiro. Também agradecemos a CBMM – Companhia Brasileira de Mineralogia e Mineração pelo NbCl₅ fornecido, e a N. P. Lopes, A. E. M. Crotti e J. N. Mendonça da Universidade de São Paulo campus de Ribeirão Preto, pelas análises de massas de alta resolução.

REFERÊNCIAS

- 1. Ribeiro, C. V. C.; Kaplan, M. A. C.; Quim. Nova 2002, 25, 533.
- Audisio, D.; Messaoudi, S.; Brion, J. D.; Alami, M.; *Eur. J. Org. Chem.* 2010, 1046; Trost, B. M.; Toste, F. D.; Greenman, K.; *J. Am. Chem. Soc.* 2003, *125*, 4518.
- Jung, J.-C.; Park, O.-S.; *Molecules* 2009, *14*, 4790; Hamdi, N.; Sauod, M.; Romerosa, A.; *Top. Heterocycl. Chem.* 2007, *11*, 283; Gudasi, K. B.; Patil, M. S.; Vadavi, R. S.; *Eur. J. Med. Chem.* 2008, *43*, 2436; Marcu, M. G.; Chadli, A.; Bouhouche, I.; Catelli, M.; Neckers, L. M.; *J. Biol. Chem.* 2000, *275*, 37181; Spino, C.; Dodier, M.; Sotheeswaran, S.; *Bioorg. Med. Chem. Lett.* 1998, *8*, 3475; Beckley-Kartey, S. A. J.; Hotchkiss, S. A. M.; Capel, M.; *Toxicol. Appl. Pharmacol.* 1997, *145*, 34.
- Pagona, G.; Katerinopoulos, H. E.; Tagmatarchis, N.; *Chem. Phys. Lett.* 2011, *516*, 76; Jacquemin, D.; Perpète, E. A.; Ciofini, I.; Adamo, C.; *Acc. Chem. Res.* 2009, *42*, 326; Cho, Y. H.; Kim, J. H.; Park, S. M.; Lee, B. C.; Pyo, H. B.; Park, H. D.; *J. Cosmet. Sci.* 2006, *57*, 11; Ammar, H.; Fery-Forgues, S.; Gharbi, R.; *Dyes and Pigments* 2003, *57*, 259.
- Liu, X.; Cole, J. M.; Waddell, P. G.; Lin, T.-C.; Radia, J.; Zeidler, A.; J. Phys. Chem. A 2012, 116, 727; Hu, Y.; Zhong, Y.; Li, J.; Cai, L.; Li, H.; Color. Technol. 2011, 127, 335; Takizawa, S.; Pérez-Bolívar, C.; Anzenbacher Jr., P.; Murata, S.; Eur. J. Inorg. Chem. 2012, 3975; Barooah, N.; Mohanty, J.; Pal, H.; Bhasikuttan, A. C.; Org. Biomol. Chem. 2012, 10, 5055; Sánchez-de-Armas, R.; San-Miguel, M. A.; Oviedo, J.; Sanz, J. F.; J. Chem. Phys. 2012, 136, 194702; Ghatak, C.; Rao, V. G.; Mandal, S.; Sarkar, N.; Phys. Chem. Chem. Phys. 2012, 14, 8925; Liu, B.; Wang, R.; Mi, W.; Li, X.; Yu, H.; J. Mater. Chem. 2012, 22, 15379; Anufrik, S. S.; Tarkovsky, V. V.; Sazonko, G. G.; Asimov, M. M.; J. Appl. Spectr. 2012, 46, 79; Chen, L.; Hu, T.-S.; Yao, Z.-J.; Eur. J. Org. Chem. 2008, 6175.
- Gao, S.-T.; Li, C.; Wang, Y.; Ma, J.-J.; Wang, C.; Zhang, J.-W.; Synth. Commun. 2011, 41, 1486; Maheswara, M.; Siddaiah, V.; Damu, G. L. V.; Rao, Y. K., Rao, C. V.; J. Mol. Catal. A: Chem. 2006, 255, 49; Leelavathi, P.; Kumar, S. R.; J. Mol. Catal. A: Chem. 2005, 240, 99; Valizadeh, H.; Shockravi, A.; Tetrahedron Lett. 2005, 46, 3501; Sharma,

G. V. M.; Reddy, J. J.; Lakshmi, P. S.; Krishna, P. R.; *Tetrahedron Lett.*2005, 46, 6119; Bahekar, S. S.; Shinde, D. B.; *Tetrahedron Lett.*2002, 43, 9195; Trost, B. M.; Toste, F. D.; *J. Am. Chem. Soc.* 1996, *118*, 6305; Sun, J.; Ding, W.-X.; Hong, X.-P.; Zhang, K.-Y.; Zou, Y.; *Chem. Nat. Comp.* 2012, 48, 16.

- 7. Donnelly, D. M. X.; Boland, G. M.; Nat. Prod. Rep. 1995, 12, 321.
- Zhang, X.-F.; Wang, H.-M.; Song, Y.-L.; Nie, L.-H.; Wang, L.-F.; Liu, B.; Shen, P.-P; Liu, Y.; *Bioorg. Med. Chem. Lett.* **2006**, *16*, 949; Yao, C.-S.; Lin, M.; Wang, L.; *Chem. Pharm. Bull.* **2006**, *54*, 1053; Hokkanen, J.; Mattila, S.; Jaakola, L.; Pirttila, A. M.; Tolonen, A.; *J. Agric. Food Chem.* **2009**, *57*, 9437.
- Dhooghe, L.; Maregesi, S.; Mincheva, I.; Ferreira, D.; Marais, J. P. J.; Lemière, F.; Matheeussen, A.; Cos, P.; Maes, L.; Vlietinck, A.; Apers, S.; Pieters, L.; *Phytochemistry* **2010**, *71*, 785; Tabanca, N.; Pawar, R. S.; Ferreira, D.; Marais, J. P. J.; Khan, S. I.; Joshi, V.; Wedge, D. E.; Khan, I. A.; *Planta Med.* **2007**, *73*, 1107; Rodrigues-Santos, C. E.; Echevarria, A.; *Tetrahedron Lett.* **2007**, *48*, 4505; Roelens, F.; Huvaere, K.; Dhooge, W.; Cleemput, M. V.; Comhaire, F.; Keukeleire, D. D.; *Eur. J. Med. Chem.* **2005**, *40*, 1042; Yamamura, T.; Onishi, J.; Nishiyama, T.; *Arch. Dermatol. Res.* **2002**, *294*, 349; Raboin, J. C.; Beley, M.; Kirsch, G.; *Tetrahedron Lett.* **2000**, *41*, 1175.
- 10. dos Santos, W. H.; da Silva-Filho, L. C.; Synthesis 2012, 44, 3361.
- Lacerda Jr., V.; dos Santos, D. A.; da Silva-Filho, L. C.; Greco, S. J.; dos Santos, R. B.; *Aldrichimica Acta* **2012**, *45*, 19; Andrade, C. K. Z.; Rocha, R. O.; *Mini-Rev. Org. Chem.* **2006**, *3*, 271; Andrade, C. K. Z.; *Curr. Org. Synth.* **2004**, *1*, 333; Batista, C. M. S.; Melo, S. C. S.; Gelbard, G.; Lachter, E. R.; *J. Chem. Res.* **1997**, *92*; Constantino, M. G.; Lacerda Jr., V.; Aragão, V.; *Molecules* **2001**, *6*, 770; Kobayashi, S.; Busujima, T.; Nagayama, S.; *Chem. Eur. J.* **2000**, *6*, 3491; Hou, J.-T.; Liu, Y.-H.; Zhang, Z.-H.; *J. Heterocycl. Chem.* **2010**, *47*, 703; Hou, J.-T.; Gao, J.-W.; Zhang, Z.-H.; *Appl. Organometal. Chem.* **2011**, *125*, 47; Hou, J.-T.; Gao, J.-W.; Zhang, Z.-H.; *Monatsh. Chem.* **2011**, *142*, 495.
- Polo, E. C.; da Silva-Filho, L. C.; da Silva, G. V. J.; Constantino, M. G.; *Quim. Nova* 2008, *31*, 763; da Silva, B. H. S. T.; Martins, L. M.; da Silva-Filho, L. C.; *Synlett* 2012, *23*, 1973; Constantino, M. G.; Lacerda Jr., V.; da Silva-Filho, L. C.; da Silva, G. V. J.; *Lett. Org. Chem.* 2004, *1*, 360; Constantino, M. G.; da Silva-Filho, L. C.; Cunha Neto, A.; Heleno, V. C. G., da Silva, G. V. J.; Lopes, J. L. C.; *Spectrochim. Acta, Part A* 2004, *61*, 171; da Silva-Filho, L. C.; Lacerda Jr., V.; Constantino, M. G.; da Silva-Filho, L. C.; Lacerda Jr., V.; Constantino, M. G.; da Silva-Filho, L. C.; Lacerda Jr., V.; Constantino, M. G.; da Silva, G. V. J.; Invernize, P. R.; *Beilstein J. Org. Chem.* 2005, *1*, 14; Constantino, M. G.; Lacerda Jr., V.; Invernize, P. R.; da Silva-Filho, L. C.; da Silva, G. V. J.; *Synth. Commun.* 2007, *37*, 3529; da Silva-Filho, L. C.; Lacerda Jr., V.; Constantino, M. G.; da Silva, Filho, J. C.; Lacerda Jr., V.; Constantino, M. G.; da Silva, G. V. J.; Synthesis 2008, *16*, 2527; Frenhe, M.; da Silva-Filho, L. C.; *Orbital Elec. J. Chem.* 2011, *3*, 1.
- 13. Alves, O. L.; Quim. Nova 1986, 9, 276.