SESQUITERPENOS E OUTROS CONSTITUINTES DAS FOLHAS DE pterodon pubescens Benth (Leguminosae)

Mayker Lazaro Dantas Miranda^a, Fernanda Rodrigues Garcez^a, Alfredo Raúl Abot^b e Walmir Silva Garcez^{a,*} ^aInstituto de Química, Universidade Federal de Mato Grosso do Sul, CP 549, 79070-900 Campo Grande – MS, Brasil ^bUniversidade Estadual de Mato Grosso do Sul, Unidade Universitária de Aquidauana, 79200-000 Aquidauana – MS, Brasil

Dados experimentais dos compostos 3-16 isolados de folhas de *Pterodon pubescens*

*l*β,6α-*Diidróxi-4*(*15*)-*eudesmeno* (**3**): Óleo incolor. $[\alpha]_D^{23}$ +2,6 (CHCl₃; *c*. 0,16)e Lit.⁵ $[\alpha]_D^{23}$ +2,6 (CHCl₃; *c*. 0,20). RMN de ¹³C (75 MHz, CDCl₃) δ_c: 79,0 (C-1), 31,8 (C-2), 35,1 (C-3), 146,2 (C-4), 55,8 (C-5), 67,0 (C-6), 49,3 (C-7), 18,1 (C-8), 36,3 (C-9), 41,6 (C-10), 26,0 (C-11), 21,3 (C-12), 16,2 (C-13), 11,6 (C-14), 107,8 (C-15).

Óxido de cariofileno (4): Óleo incolor. $[\alpha]_D^{23}$ –56,4 (CHCl₃; *c*. 0,20)e Lit.⁶ $[\alpha]_D^{20}$ –57,7 (CHCl₃; *c*. 0,60). RMN de¹³C (75 MHz, CDCl₃) δ_C : 63,7 (C-1), 30,2 (C-2), 29,7 (C-3), 151,8 (C-4), 48,7 (C-5), 39,7 (C-6), 50,7 (C-7), 27,2 (C-8), 39,2 (C-9), 59,8 (C-10), 34,0 (C-11), 21,6 (C-12), 29,8 (C-13), 112,7 (C-14), 16,9 (C-15).

α-*Cadinol* (5): Óleo incolor. $[α]_D^{23}$ –36,8 (CHCl₃; *c*. 0,17)e Lit.⁷ [α]_D^{20} –37,1 (CHCl₃; *c*. 0,9). RMN de ¹³C (75 MHz, CDCl₃). δ_c: 50,0 (C-1), 22,6 (C-2), 31,0 (C-3), 134,9 (C-4), 122,3 (C-5), 39,8 (C-6), 46,6 (C-7), 22,6 (C-8), 42,1 (C-9), 72,4 (C-10), 26,0 (C-11), 21,5 (C-12), 15,1 (C-13), 20,7 (C-14), 23,8 (C-15).

Espatulenol (6): Óleo incolor. $[\alpha]_D^{23}$ +7,2 (CHCl₃; *c*. 0,20) e Lit.⁸ $[\alpha]_D^{20}$ +7,2 (CHCl₃; *c*. 1,3). RMN de ¹³C (75 MHz, CDCl₃) δ_C : 54,3 (C-1), 26,7 (C-2), 41,7 (C-3), 80,9 (C-4), 53,4 (C-5), 29,9 (C-6), 27,5 (C-7), 24,7 (C-8), 38,8 (C-9), 153,4 (C-10), 20,9 (C-11), 28,6 (C-12), 16,3 (C-13), 26,0 (C-14), 106,6 (C-15).

β-Sitosterol (7): Sólido branco amorfo. RMN de 13 C (75 MHz, CDCl₃) δ_c: 37,4 (C-1), 31,6 (C-2), 71,8 (C-3), 42,3 (C-4), 140,7 (C-5), 121,7 (C-6), 31,6 (C-7), 31,9 (C-8), 50,1 (C-9), 36,1 (C-10), 21,0 (C-11), 39,7 (C-12), 42,3 (C-13), 56,7 (C-14), 24,3 (C-15), 28,2 (C-16), 56,0 (C-17), 11,9 (C-18), 19,0 (C-19), 36,1 (C-20), 18,7 (C-21), 33,9 (C-22), 26,0 (C-23), 45,8 (C-24), 29,1 (C-25), 19,8 (C-26), 19,3 (C-27), 23,0 (C-28), 12,0 (C-29).

Estigmasterol (8): Sólido branco amorfo. RMN de ¹³C (75 MHz, CDCl₃) δ_{C} : 37,2 (C-1), 31,6 (C-2), 71,8 (C-3), 42,3 (C-4), 140,7 (C-5), 121,7 (C-6), 31,6 (C-7), 31,9 (C-8), 50,1 (C-9), 36,5 (C-10), 21,0 (C-11), 39,7 (C-12), 56,8 (C-13), 56,7 (C-14), 24,3 (C-15), 28,9 (C-16), 56,0 (C-17), 12,2 (C-18), 19,0 (C-19), 40,4 (C-20), 21,2 (C-21), 138,3 (C-22), 129,2 (C-23), 51,2 (C-24), 29,7 (C-25), 21,2 (C-26), 18,9 (C-27), 25,4 (C-28), 12,2 (C-29).

 $\begin{aligned} & \textit{Feofitina A (9): Solido esverdeado. RMN de {}^{13}C (75 \text{ MHz, CDCl}_3) \\ \delta_C: 142,2 (C-1), 132,1 (C-2), 12,2 (C-2^1), 136,6 (C-3), 129,0 (C-3^1), \\ 123,0 (C-3^2), 136,4 (C-4), 97,6 (C-5), 155,5 (C-6), 136,1 (C-7), 11,2 \\ (C-7^1), 145,2 (C-8), 19,5 (C-8^1), 17,4 (C-8^2), 149,8 (C-9), 104,5 (C-10), 137,9 (C-11), 128,8 (C-12), 12,1 (C-12^1), 128,8 (C-13), 189,6 \\ (C-13^1), 64,7 (C-13^2), 169,5 (C-13^3), 52,9 (C-13^4), 149,8 (C-14), \end{aligned}$

105,4 (C-15), 161,3 (C-16), 51,2 (C-17), 29,9 (C-17¹), 31,2 (C-17²), 172,9 (C-17³), 50,2 (C-18), 23,1 (C18¹), 172,4 (C-19), 93,5 (C-20), 60,5 (C-P1), 117,7 (C-P2), 142,3 (C-P3), 38,7 (C-P4), 23,7 (C-P5), 37,1 (C-P6), 31,9 (C-P7), 37,1 (C-P8), 23,1 (C-P9), 37,1 (C-P10), 31,9 (C-P11), 36,6 (C-P12), 23,1 (C-P13), 38,7 (C-P14), 28,9 (C-P15), 22,9 (C-P16), 22,6 (C-P17), 19,5 (C-P11¹), 19,5 (C-P7¹), 17,4 (C-P3¹).

Luteolina (**10**): Sólido amarelo. RMN de¹³C (75 MHz, CD₃OD) δ_c : 162,9 (C-2), 103,6 (C-3), 183,8 (C-4), 166,6 (C-5), 100,4 (C-6), 166,3 (C-7), 95,3 (C-8), 159,4 (C-9), 105,0 (C-10), 123,5 (C-1'), 114,2 (C-2'), 146,9 (C-3'), 151,0 (C-4'), 116,8 (C-5'), 120,5 (C-6').

 $\label{eq:scalar} \begin{array}{l} \textit{Kaempferol}(11): Sólido amarelo. RMN de {}^{13}C (75 MHz, CD_3OD) \\ \delta_C: 148,0 (C-2), 137,3 (C-3), 177,5 (C-4), 162,5 (C-5), 99,2 (C-6), \\ 165,6 (C-7), 94,4 (C-8), 158,2 (C-9), 104,6 (C-10), 123,8 (C-1'), \\ 130,7 (C-2'e 6'), 116,3 (C-3'e 5'), 160,5 (C-4'). \end{array}$

Quercetina (12): Sólido amarelo. RMN de 13 C (75 MHz, CD₃OD) δ_c : 148,0 (C-2), 137,2 (C-3), 177,3 (C-4), 162,5 (C-5), 99,2 (C-6), 165,6 (C-7), 94,4 (C-8), 158,2 (C-9), 104,5 (C-10), 124,1 (C-1'), 115,9 (C-2'), 146,2 (C-3'), 148,7 (C-4'), 116,2 (C-5'), 121,6 (C-6').

(+)-*Catequina* (**13**): Sólido amarelo. $[\alpha]_D^{23}$ +15 (CH₃OH; *c*. 0,93) e Lit.⁹ $[\alpha]_D^{23}$ +15 (CH₃OH; *c*. 0,88). RMN de¹³C (75 MHz, CD₃OD) δ_C : 82,7 (C-2), 68,7 (C-3), 28,4 (C-4), 156,8 (C-5), 96,4 (C-6), 157,6 (C-7), 95,5 (C-8), 157,4 (C-9), 100,8 (C-10), 132,1 (C-1'), 115,3 (C-2'), 146,2 (C-3'), 157,6 (C-4'), 116,2 (C-5'), 120,1 (C-6').

Quercetina-3-O-α-L-rhamnopiranosídeo (**14**): Sólido amarelo. RMN de ¹³C (75 MHz, CD₃OD) δ_{c} : 159,3 (C-2), 131,8 (C-3), 179,5 (C-4), 162,9 (C-5), 99,8 (C-6), 165,8 (C-7), 94,8 (C-8), 158,4 (C-9), 105,8 (C-10), 122,9 (C-1'), 116,4 (C-2'), 146,3 (C-3'), 149,7 (C-4'), 116,9 (C-5'), 122,8 (C-6'), 103,4 (C-1''), 71,8 (C-2''), 71,9 (C-3''), 73,2 (C-4''), 71,9 (C-5''), 17,6 (C-6'').

 $\begin{array}{l} \textit{Rutina} \ (15): \ Sólido \ amarelo. \ RMN \ de^{13}C \ (75 \ MHz, \ CD_{3}OD) \\ \delta_{C}: \ 158,4 \ (C-2), \ 135,5 \ (C-3), \ 179,3 \ (C-4), \ 162,9 \ (C-5), \ 99,9 \ (C-6), \\ 165,9 \ (C-7), \ 94,9 \ (C-8), \ 159,3 \ (C-9), \ 105,5 \ (C-10), \ 123,1 \ (C-1'), \\ 117,7 \ (C-2'), \ 145,7 \ (C-3'), \ 149,7 \ (C-4'), \ 116,0 \ (C-5'), \ 123,5 \ (C-6'), \\ 104,6 \ (C-1''), \ 75,6 \ (C-2''), \ 78,1 \ (C-3''), \ 71,3 \ (C-4''), \ 77,1 \ (C-5''), \\ 68,5 \ (C-6''), \ 102,3 \ (C-1'''), \ 72,0 \ (C-2'''), \ 72,2 \ (C-3'''), \ 73,8 \ (C-4'''), \\ 69,6 \ (C-5'''), \ 17,8 \ (C-6'''). \end{array}$

Ácido p-hidroxibenzoico (**16**): Sólido branco. RMN de ¹³C (75 MHz, CD₃OD) δ_c : 122.5 (C-1), 132.9 (C-2 e C-6), 116,0 (C-3 e C-5), 163,2 (C-4), 170,2 (C-7).

Espectros dos compostos 1-16 isolados de folhas de Pterodon pubescens

Figura 1S. Espectro de RMN de ¹H (300 MHz, CDCl₃) do composto 1 ((rel)-6β,2β-epóxi-5β-hidróxi-isodaucano)

Figura 2S. Espectro de RMN de ¹³C e experimentos de DEPT 135° e 90° (75 MHz, CDCl₃) do composto 1((rel)-6β,2β-epóxi-5β-hidróxi-isodaucano)

Figura 3S. Experimento HSQC (300/75 MHz, CDCl₃) do composto 1 ((rel)-6β,2β-epóxi-5β-hidróxi-isodaucano)

Figura 4S. Experimento HMBC (300/75 MHz, CDCl₃) do composto 1 ((rel)-6β,2β-epóxi-5β-hidróxi-isodaucano)

Figura 5S. Experimento NOESY (300 MHz, CDCl₃) do composto 1 ((rel)-6β,2β-epóxi-5β-hidróxi-isodaucano)

Figura 6S. Experimento COSY (300 MHz, CDCl₃) do composto 1 ((rel)-6β,2β-epóxi-5β-hidróxi-isodaucano)

Figura 7S. Espectro de Massas do composto 1 ((rel)-6β,2β-epóxi-5β-hidróxi-isodaucano)

Figura 8S. Espectro de infravermelho do composto 1 ((rel)-6β,2β-epóxi-5β-hidróxi-isodaucano)

Figura 9S. Espectro de RMN de ¹H (300 MHz, CDCl₃) do composto 2 (oplopanona)

Figura 10S. Espectro de RMN de ¹³C e experimentos DEPT 90° e DEPT 135°(75 MHz, CDCl₃) do composto 2 (oplopanona)

S6

Figura 11S. Experimento HSQC (300/75 MHz, CDCl₃) do composto 2 (oplopanona)

Figura 12S. Experimento HMBC (300/75 MHz, CDCl₃) do composto 2 (oplopanona)

Figura 13S. Espectro de RMN de ¹H (300 MHz, CDCl₃) do composto 3 (Eudes-4(15)-eno-1β,6α-diol)

Figura 14S. Espectro de RMN de ¹³C e experimentos DEPT 90° e 135° (75 MHz, CDCl₃) do composto 3 (Eudes-4(15)-eno-1β,6α-diol)

Figura 15S. Espectro de RMN de ¹H (300 MHz, CDCl₃) do composto 4 (Óxido de Cariofileno)

Figura 18S. Espectro de RMN de ¹³C e experimentos DEPT 135° e 90° (75 MHz, CDCl₃) do composto 5 (α-Cadinol)

Figura 19S. Espectro de RMN de ¹H (300 MHz, CDCl₃) do composto 6 (Espatulenol)

Figura 20S. Espectro de RMN de ¹³C e experimento DEPT 135° (75 MHz, CDCl₃) do composto 6 (Espatulenol)

RMN-1H - PPA22 - Beta-sitosterol (7) e Estigmasterol (8) - CDCl3 - 300MHz

Figura 22S. Espectro de RMN de ¹³C e DEPT 135° (75 MHz, CDCl₃) do composto 7 e 8 (β-sitosterol e Estigmasterol)

Figura 23S. Espectro de RMN de ¹H (300 MHz, CDCl₃) do composto 9 (Feofitina A)

Figura 24S. Espectro de RMN de ¹³C e DEPT 135°(75 MHz, CDCl₃) do composto 9 (Feofitina A)

Figura 25S. Espectro de RMN de ¹H (300 MHz, CD₃OD) do composto 10 (Luteolina)

Figura 26S. Espectro de RMN de ¹³C e experimento DEPT 135° (75 MHz, CD₃OD) do composto 10 (Luteolina)

Figura 27S. Espectro de RMN de ¹H (300 MHz, CD₃OD) do composto 11 (Kaempferol)

Figura 28S. Espectro de RMN de ¹³C (75 MHz, CD₃OD) do composto 11 (Kaempferol)

Figura 30S. Espectro de RMN de ¹³C (75 MHz, CD₃OD) do composto 12 (Quercetina)

Figura 31S. Espectro de RMN de ¹H (300 MHz, CD₃OD) do composto 13 ((+)-catequina)

Figura 32S. Espectro de RMN de ¹³C (75 MHz, CD₃OD) do composto 13 ((+)-catequina)

Figura 33S. Espectro de RMN de ¹H (300 MHz, CD₃OD) do composto 14 (Quercetina-3-O-α-L-rhamnopiranosídeo)

Figura 34S. Espectro de RMN de ¹³C e experimento DEPT 135° (75 MHz, CD₃OD) do composto 14 (Quercetina-3-O-Q-L-rhamnopiranosídeo)

Figura 35S. Espectro de RMN de ¹H (300 MHz, CD₃OD) do composto 15 (Rutina)

Figura 36S. Espectro de RMN de ¹³C e experimento DEPT 135°(75 MHz, CD₃OD) do composto 15 (Rutina)

Figura 37S. Espectro de RMN de ¹H (300 MHz, CD₃OD) do composto 16 (Ácido p-hidroxibenzoico)

Figura 38S. Espectro de RMN de ¹³C (75 MHz, CD₃OD) do composto 16 (Ácido p-hidroxibenzoico)

Fracionamento do extrato etanólico das folhas de Pterodon pubescens: obtenção dos compostos 1-16

a) Fluxograma da partição do extrato etanólico e obtenção dos resíduos orgânicos das folhas de P. pubescens.

b) Fluxograma do fracionamento cromatográfico realizado com as frações obtidas da fase hexânica do extrato etanólico das folhas de Pterodon pubescens.

c) Fluxograma do fracionamento cromatográfico realizado com as frações obtidas da fase acetato de etila do extrato etanólico das folhas de Pterodon pubescens.

